This tutorial goes through the safety practices required by the MATE ROV Competition. It covers:

- Initial Safety Inspection (if required)
- Onsite Safety Inspection
- Examples and photographs of what will and will not pass safety inspection
DOCUMENTATION REQUIRED
DOC-001: Companies must provide a system interconnection diagram (SID) of their vehicle control system. An SID is an electrical diagram of their wiring, including their control box, motors, and any other electrical systems on their vehicle. The SID should separate and show what systems are on the surface and what systems are on the vehicle.

The SID is the starting point for SCOUT & NAVIGATOR Safety. Companies should be aware of safety and every team is required to submit a SID. If not required early by the regional, a SID must be present for the on-site safety inspection.

DOC-002: Any electrical diagram should use ANSI, NEMA, or IEC symbols. They should be neatly hand drawn or created using a CAD software program. AN EXAMPLE OF A SID IS SHOWN IN THE COMPETITION MANUAL.

DOC-003: Companies using fluid power must submit a fluid interconnection diagram (Fluid SID) of their system. Companies using syringe hydraulics only need a simple diagram, and could include it on their electrical SID. NAVIGATOR companies using powered pumps or compressors MUST include a full fluid SID.
Onsite Safety Inspection

Safety is the competition’s primary concern and guiding principle. Any system that is considered unsafe by competition officials will not be allowed to compete.

If a concern is found during the first safety inspection, companies are permitted to attempt to correct it and have their ROV re-inspected. However, the competition schedule will NOT change to allow companies more time.

Companies are allowed to have their vehicle re-inspected twice. If a company fails to pass its third and final safety inspection, it is disqualified from the underwater competition portion of the event. There are NO APPEALS once your ROV has been disqualified.
Onsite Safety Inspection

Examples of safety violations from previous ROV competitions include:

• The ROV does not use Anderson Powerpole connectors to attach to main power.
• No SID was provided at the safety check.
• The SID did not show a main fuse.
• The ROV used pneumatics, but the technical documentation did not include a pneumatics diagram (fluid SID).
• Sharp items, or potentially sharp items, (fishing hooks, glass bottles) were included on the vehicle.
• The vehicle motors were not waterproofed.
• Propellers were not protected inside the framework or not shrouded.
• **NEW IN 2024 FOR NAVIGATOR!!!** Propellers MUST be shrouded to IP-20 standards. This means an ½-inch (1.252 cm) wooden dowel cannot touch any propeller.
• Camera did not operate off the 12-volt MATE power supply.
Onsite Safety Inspection

Competition staff will conduct a safety inspection of the vehicle using the safety inspection rubric.

If the safety inspector(s) identify a safety violation, companies will have the opportunity to address it. The pool practice or product demonstration run schedule will NOT change to allow companies more time.

If during the second safety review the
 a. violation has not been properly addressed or
 b. another violation is revealed
companies will have ONE additional opportunity to address the issue.
SCOUT SAFETY INSPECTION SHEET

http://materovcompetition.org/scoring

materovcompetition.org/rov-kits
NAVIGATOR SAFETY INSPECTION SHEET

Company Names: __________________ Company Numbers: __________________

MATE ROV COMPETITION
NAVIGATOR CLASS SAFETY INSPECTION CHECKLIST

Companies must bring this check list, the ROV, tether, surface controls, and any other item used in the deployment and operation of the ROV to the event. All items must be available to the safety inspectors during the inspection process.

1. Initial Safety Inspection:
 - Fluke power supply
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

2. ROV Physical
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

3. ROV Electrical
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

4. System Control Panel & Physical
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

5. Batteries
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

6. Energy Source
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

7. Safety Points
 - All items attached to ROV are secure
 - Tether is properly secured at the ROV
 - No exposed parts
 - All electrical connections are properly made and secure
 - No exposed electrical components
 - No exposed wires or cables
 - All electrical connections are properly made and secure

http://materovcompetition.org/scoring

materovcompetition.org/rov-kits
SCOUT & NAVIGATOR Class Safety Inspection Protocol

2.0 Physical

All items attached to ROV are secure and will not fall off.

Examples:

- loose camera
- securely attached camera

Note for NAVIGATOR class: Large monitors not secured to the control station will be considered a loose item. Any monitor / video screen should be secured to the control station or stabilized on the table.
2.0 Physical

No sharp edges or elements of ROV design that could cause injury to personnel or damage to pool surface.

Examples:
The points on the front of this ROV may look cool, but the inspector failed the company during safety inspection for putting something that could be a danger to the divers.

NOTE: Monitors with glass fronts could create sharp edges if they become broken! Monitors with glass fronts will not pass safety inspection.
SCOUT & NAVIGATOR Class Safety Inspection Protocol

2.0 Physical

Hazardous items are identified and protection provided.

Examples:
Sharp edges on the scoop are painted red; yellow and black safety warning colors are used elsewhere. The company successfully passed their safety inspection because potentially hazardous items that are needed to complete a task are identified and protected.
2.0 Physical

NAVIGATOR: Propellers must be shrouded to IP-20 standards even if they are enclosed inside the frame of the ROV

Propellers are properly shrouded to IP-20 standards on both sides of the propeller. These shrouds were 3D printed. A ½-inch wooden dowel cannot touch the propeller from any angle.
2.0 Physical

ALL Propellers must be shrouded or completely enclosed inside the frame of the ROV

If your ROV bumps up against the wall of the pool, turning propellers should not impact the side of the pool or other objects.

Insufficient shrouding
3.0 Electrical
Single attachment point to power source.

Anderson powerpole connectors are required to connect to the MATE power source.

A single inline fuse (not shown) must be within 30cm of attachment point (power connectors). Fuses in each line are acceptable.

NAVIGATOR and SCOUT class utilize the RED & BLACK powerpole connectors. Looking at the end of the connectors, you will see a small A on the end of each. With the tip of the A pointing up, *black* should be on the left and *red* on the right.
3.0 Electrical

Problems with the Anderson powerpoles have developed when teams do NOT use the proper crimper for these connectors.

Standard Electricians Crimpers will NOT work!

The crimp must be a roll crimp not a “squish” crimp.
3.0 Electrical System Interconnection Diagram (SID)

- **System Interconnection Diagram (SID)** A SID is a system-level, connection diagram that includes electrical and, if applicable, fluid power wiring information. Board-level and component-level schematics should not be included; however, these may be brought to the engineering evaluation for reference purposes. The intent is to provide the competition judges with a one-line diagram showing how the various systems are interconnected without the detail of each and every wire.

See the Competition Manual or the next two slides for examples of a SID. However, you must create your own SID for your vehicle. Do not directly copy the SID from a MATE resource, even if it is a proper SID for your vehicle.
Example SID 1
Example SID 2

Fuse should be labeled and denoted by a proper symbol IEC, NEMA or ANSI symbol.
3.0 Electrical

Single inline fuse within 30cm of attachment point.

Examples:
This is an example of multiple attachments ahead of the fuse that **WILL NOT** PASS.
In addition, MATE no longer uses banana plugs for power attachment.
3.0 Electrical

No exposed copper or bare wire. No exposed motors.

Examples:
These **WILL NOT** PASS. The motor on the left is both exposed and has bare wire.
The motor on the right is exposed and not sealed.
3.0 Electrical

No exposed copper or bare wire.

Examples:
This **WILL NOT** PASS. Using banana plugs at both ends of the wire to route power from one section to another violates MATE’s safety rules. It is possible for the hot end of the wire to become unplugged and create a safety hazard.
3.0 Electrical
Tether is properly secured at surface control point and at ROV.

Example:
The wires on the ROV are loose or could get caught in a propeller when moving around the pool. Use tape, cable ties, or other methods to secure the wires away from any moving or potentially dangerous parts.

Wires entering into the control box should also be secured. If you accidentally walk the controller away from the ROV, you want any strain to be contained. You do not want to pull wires inside the control box.
3.0 Electrical

Surface controls: All wiring and devices properly secured.

Examples:
The two pictures below are examples of loose wiring. There is no strain relief and the wires can easily pull loose from their connections. Hot melt glue and tape are not acceptable strain relief items.
3.0 Electrical

Surface controls: All wiring and devices properly secured.

Example: both the red/black power wires and the tether wires going into the control box are properly secured by tight strain relief.
3.0 Electrical

Surface controls: All control elements are mounted with wiring inside an enclosure.

There are multiple FAILS in the picture below!

- Exposed wiring
- Multiple fuses instead of single point fuse for power.
- Loose wires.
- Alligator clips used for connections.
- No strain relief provided for wires coming from power or going to ROV.

See the MATE Expected Work Practices for more on wire discipline.
SCOUT & NAVIGATOR Class Safety Inspection Sheet Tutorial

Fluid Power
SCOUT class or NAVIGATOR class using manual pumps only

4.0 Pneumatic / Hydraulic Checklist
- Pneumatic or hydraulic diagrams present?
- Hand or Foot pump only?
- Uses water or air only?
- No Pressure Accumulators?
- Any container that air is being pumped into is vented to the pool with vent holes at least $\frac{1}{4}$" (6.35mm) in diameter?
Fluid Power
NAVIGATOR class (only) if using pressurized fluid power.

4.0 Pneumatic / Hydraulic Checklist

◆ Did you PASS the pneumatics/hydraulics test?
◆ Do you have your pneumatic or hydraulic SID(s) present?
◆ Are pneumatic and/or hydraulic component specifications provided?
◆ Are you using pressure rated lines and fittings?
◆ Is your attachment to pressure source is secure?
◆ Is your pressure regulated to 40psi max for pneumatics and 150 psi max for hydraulics? COMPANIES MUST PROVIDE THE REGULATOR.
◆ Do your pressure vessels have a stamped pressure rating or verification by specification and do the pressure vessels have current inspection sticker?
◆ Are your pressure vessels secured on pool deck and not rolling around?
◆ If a company fabricated pressure accumulator is used, are pressure test results provided?
◆ Are hydraulic fluids leaking?
◆ Do your pneumatics utilize compressed air or inert gas?
Fluid Power
NAVIGATOR class (only) if using pressurized fluid power.

4.0 Pneumatic / Hydraulic
Examples of Tank Certifications and Inspection Stickers

The tank must have a current visual inspection certificate (above) AND current hydrostatic test stamp (on the right).
5.0 Laser Checklist (NAVIGATOR only)

◆ Did the team send the laser specs to the competition coordinator two weeks prior to the regional?
◆ Does your SID show the laser driver?
◆ Does your laser have an on/off switch on the surface controller?
◆ Is the laser powered through the MATE surface power supply?
◆ Are batteries used to power the laser? (this is not allowed)
◆ Are your lasers the proper type? Visible Laser in 630-680 nm (red) or near 532 nm (green) Class I, Class II, or Class IIIa Category; Red Laser: 5mW or less Green Laser: 1 mW or less. Be sure and bring your laser specs to the safety inspection.
◆ Is the laser voltage at or below laser rated voltage & current?
◆ Was a specification sheet showing laser and laser glasses sent to, and approved by, MATE ROV Competition officials prior to event?
◆ Does your ROV have a Laser shield or beam stop attachment within 30 cm of laser when out of water?
◆ Do the team members have laser safety glasses, regardless of the laser output power?
SAFETY FIRST!

Our goal is not to fail teams and keep them from competing, but rather to run a fair and **SAFE** competition for all.

If you have a question or concern, contact that MATE ROV Competition Technical Manager at mgardner@marinetech.org. In this case it is better to ask for permission, not forgiveness. Remember, it is better to be **SAFE** than sorry!