
 

 

PREFACE 
M.I.A. Robotics is a 30-person company of 

interdisciplinary students from Alexandria 

University which was originally founded in 

2011. This being its 11th year at the MATE 

ROV Competition, the company has accu-

mulated expertise in the field of underwater 

robotics and Machine learning over the 

years. With a steady pace towards improv-

ing the performance of each ROV. 

There are numerous phyla that encom-

pass a wide range of marine organisms. 

These phyla include diverse groups of ani-

mals, plants, and other organisms that in-

habit marine ecosystems. Our mission to 

enhance the way we interpret deep ocean  

and gather more information by utilizing AI 

such as object detection. 



 

 

1– INTRODCTION 

 The oceans cover more than 70% of 
our planet's surface, yet much of their depths 
remain a mystery to us. Ocean expeditions 
provide us with a unique opportunity to dive 
into this enigmatic realm and unravel its se-
crets. Scientists, researchers, and explorers 
from all corners of the globe have dedicated 
their lives to understanding the complex inter-
play between the ocean and the planet's eco-
systems. 

At the heart of ocean expeditions lies the pur-

suit of knowledge and understanding. From 

mapping the seafloor and studying marine life 

to investigating climate patterns and discover-

ing ancient shipwrecks, these voyages offer a 

wealth of opportunities to expand our 

knowledge of the ocean and its countless in-

habitants. 

 

 

 

    

 

 

 

 

 

 

 

 

 

One of the important tools needed for 

these expeditions is the classifying the un-

derwater species to gain more information 

about this classification we need to local-

ize this classified species in the captured 

frame, this enable us to know more about 

the scene underwater by applying more 

advanced algorithms such as tracking to 

know about the species behavior. 

Our Object Detection model classifies un-

derwater species by their unique physical 

characteristics, such as body shape, 

movement patterns, and distinguishing 

features like arms or tentacles. We have 

trained the model on a diverse dataset of 

marine life, ensuring it can accurately 

identify species like brittle stars 

(Ophiuroidea), fish, and other echino-

derms. By focusing on key visual cues 

such as the central disk shape and the 

flexibility of the arms, our model can differ-

entiate brittle stars from similar species. 

 



 

 

2-PROCESS FLOW 

Iterative Approach 

The iterative process, also known as the 

agile process, emphasizes flexibility, adapta-

bility, and continuous improvement through-

out the project. This give as : 

• Flexibility: The iterative process allows 

for changes and adjustments to be made 

throughout the project based on feedback, 

new insights, or evolving requirements.  

• Continuous feedback: feedback is incor-

porated regularly, enabling the project 

team to address issues, refine models, 

and make improvements incrementally. 

• Rapid prototyping: The iterative process 

often involves building and refining proto-

types or minimum viable products (MVPs) 

to gather feedback early on and validate 

model in early steps.  

• Collaboration: Collaboration and commu-

nication among team members,  are es-

sential in the iterative process. Regular 

meetings and interactions facilitate trans-

parency and alignment.  

• Quick response to changes: The itera-

tive process allows for quick adaptation to 

changes in requirements, emerging tech-

nologies, or unexpected challenges. This 

agility helps avoid the risk of being locked 

into a suboptimal solution.  

  

 



 

 

3-Gather Dataset 
Gathering a dataset for object detection models re-
quires careful consideration of various factors to en-
sure that it covers a wide range of objects, perspec-
tives, and scenarios. Here is a step-by-step guide to 
help you gather a dataset for object detection: 

3.1- Identify data sources 
•  We tried to collect dataset that have the same 

distribution as validation videos, then we decide 
to focus on videos of  NOAA Expatiations. Also 
we collect from other sources to achieve general-
ization. 

 

• We also collect data through web scrapping to 
automate process of gathering dataset 

 

3.2- Annotation 
• Object detection datasets require bounding box 

annotations that define the location and size of 
objects within the images. There are various an-
notation tools available,  

 

• We decide to use labelImg for easy usage and 
for supporting JSON format. 

 
 
 
 
 
 
 
 
 

 
 
 

3.3- Image augmentation 
 Consider applying data augmentation techniques to 
expand your dataset. This involves applying trans-
formations such as rotations, translations, scal-
ing, flipping, or adding noise to your existing imag-
es. Data augmentation helps to increase the diversi-
ty of your dataset and improve the model's robust-
ness. 
 
We apply image augmentation operation with prob-
ability portion as each operation needed. 

• Blurring 

• Brightness 

• Hue Shift 



 

 

• Darkness 

• Rotate 

• Noise 

• Horizontal Filp 

 

 

 

3.4– Splitting Dataset 

Divide your dataset into appropriate sub-

sets for training, validation, and testing. 

Typically, a significant portion is allocated 

for training (e.g., 70-80%), while the re-

maining portion is used for validation and 

testing. This division helps evaluate model 

performance and avoid overfitting.  

 

Because we have relatively large dataset 

which is 17,500 image we decide to split 

our data to 85% training dataset (14,875 

image), 10% validation dataset (1,750 im-

age), and 5% test dataset (88 image), for 

exploiting more data in training 3,000 im-

age is sufficient for hyperparameter tun-

ing. 

 



 

 

3.5– Dataset Analysis 

When we gather our dataset we take care to 

satisfy diversity in different levels, such as: 

• Diversity in source: That is our dataset 

come from different sources to achieve 

generalization and the model become less 

prone to overfit. 

• Diversity in Size: That is our dataset con-

tain object of interest in different, and di-

verse sizes, this make our model could 

detect large as well as small objects. 

We also could increase this diversity by im-

age augmentation, but we need to tune this 

operation to become effective to our need. 

We also take care of randomization that 

mean, to mean our model to be less bi-

ased, achieve that by: 

• Shuffle Dataset: We shuffled our da-

taset to train and validate from the 

same distribution this make model 

less biased. 

• Proportion Augmentation: We also 

tune proportion of each augmentation 

operation to ensure less bias dataset. 

• Cover vulnerabilities: after each da-

taset version we try to cover it’s vul-

nerability. 

 

 

4– MODEL 

4.1– Choose Framework 

There are several popular object detec-

tion frameworks available that provide 

pre-built models, tools, and resources 

to develop and deploy object detection 

models efficiently. Here are some wide-

ly used object detection frameworks:  

Most important two-stage object de-

tection algorithms: 

• RCNN and SPPNet (2014) 

• Fast RCNN and Faster RCNN 

(2015) 

• Mask R-CNN (2017) 

• Pyramid Networks/FPN (2017) 

• G-RCNN (2021)  

Most important one-stage object de-

tection algorithms 

• YOLO (2016) 

• RetinaNet (2017) 

• YOLOv3 (2018) 

• YOLOv4 (2020) 

• YOLOR(2021) 

• YOLOv7(2022) 

• Yolov8(2023) 

Transformer-based object detection 

algorithms: 

DETR (2020) 

DETR 2.0 (2022) 



 

 

4– MODEL 

4.3– RE-DETR 

Why We Chose RE DETR from Ultralytics: 

We decided to use RE DETR because it 

builds on the innovative DETR framework, 

which introduced transformers to object de-

tection, but adds significant optimizations for 

real-time performance. Key features of RE 

DETR include: 

Efficient Hybrid Encoder: RE DETR uses a 

hybrid encoder that decouples within-scale 

interactions from cross-scale feature fusion, 

allowing it to handle multi-scale features 

more effectively. This results in reduced com-

putational costs while maintaining high accu-

racy. 

IoU-Aware Query Selection: This feature 

improves the initialization of object queries by 

focusing on the most relevant objects in the 

scene. It enhances the model's ability to ac-

curately detect and localize objects, even in 

complex environments. 

Adjustable Inference Speed: Unlike many 

other models, RE DETR allows users to ad-

just the inference speed by modifying the 

number of decoder layers used during infer-

ence, without the need for retraining.  

Real-World Applications: RE DETR is par-

ticularly well-suited for applications where 

both speed and accuracy are critical, Its abil-

ity to maintain high performance in real-time 

makes it an ideal choice for these demanding 

scenarios. 

 

 

 

4.2– Training 

We trained our RE DETR model for 100 

epochs, with each epoch taking approxi-

mately 30 minutes on a T4 GPU on 

Google Colab. This extensive training al-

lowed us to achieve a high mean Average 

Precision (mAP) and low loss values, en-

suring the model’s effectiveness in real-

time object detection tasks. 

 

The RE DETR model we used, rt-detr-l, is 

highly optimized with 673 layers, compris-

ing 32,970,476 parameters. The model 

has a total of 0 gradients and requires 

108.3 GFLOPs, making it computationally 

efficient while still delivering high accuracy. 

The detailed summary of the model pa-

rameters is as follows: 673 layers, 

32,970,476 parameters, 0 gradients, 

108.3437056 GFLOPs. 

 

During training, it took approximately 20 

hours to complete 50 epochs. However, 

this training duration was sufficient to 

reach an optimal level of performance. We 

used input images of 1024x1024 pixels to 

ensure the model could accurately detect 

objects across various scales, particularly 

small objects. 



 

 

4.4– Deployment  

A) Detection Source 

 we could deploy the model on different multi-

media: 

• Live stream from camera. 

• Static stored video. 

• Videos from YouTube. 

• Folder of stored videos. 

• Folder of stored images. 

• Single image. 

 

B) Detection Excel 

Our driver could generate a excel file that has 

the stream detections with the localization in-

formation. 

 

C) Detection Processing 

Our driver could be deployed  both on CPU 

or GPU using CUDA for that we support 

two model one is named Accurate which is 

large architecture for deployed real time on 

GPU, and other named Fast which is small 

architecture for run real time on CPU. 

 

D) Cropped Bounding boxes 

Our driver could extract cropped bounding 

box and save them. 





 

 

1- Command Line Interface (CLI) 
We  build an easy to use CLI to deploy the model with a set of feature to infer in different 

types of inputs, generate the needed output, and display the stream in suitable manner. 

Also this CLI not only for user interface but also it’s the base backend of our Web interface  

 

1.1– Arguments 
CLI has many arguments to interact with and this arguments serve different aspect of de-

ployment process such as take stream, and customize output. (most of this arguments have 

default values except one that have *). 

 

 

  

Argument Description  

model * Path to model used 

input * Path to input multimedia (e.g. --input inputs/video1.mp4) 

output Path to output folder that will have the generated output (if not exist it will be created) 

device Name of device used GPU/CPU (e.g. if CPU: --device cpu, If GPU:  --device 0) 

name Name of the generated outputs such as annotated video and output excel 

update_excel The number of frames to update output excel (e.g. if each frame --update_excel 1,  -1 if only at end) 

conf Confidence threshold of bounding box generated. (e.g. --conf 0.5) 

iou IOU threshold of Non-maximum suppression. (e.g. --iou 0.2) 

classes  Path to classes file which is yaml file has the classes name (used to filter output classes also). 

imgsz  Input frame size to the model (e.g. —imgsz 640 -> 384x640, —imgsz 1280 -> 736x1280) 

show To show annotated stream (e.g. --show -> to show stream) 

gen_excel To generate and save annotation excel file (e.g. --gen_excel -> to save excel) 

save To save annotated stream (e.g. --save  -> to save stream) 

save_crop To save cropped bounding  boxes of the stream (e.g. --save_crop -> to save cropped images). 

hide_labels To hide information of bounding box such as name and confidence for lite display (e.g. --hide_labels -> to Hide ) 

port Port to stream on if needed  (e.g. --port 5000 (to stream on 5000) ) 
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1.2– Multimedia Inputs 

A) You can set input as static video file that exist in our local machine. 

 

B) You can take input as live stream from connected device (e.g. --input 0) 

 

C) You can set input as folder of videos and the output will be the annotated images. 

 

D) You can set input as folder of images and the output will be the annotated images. 

 

E) You can also set input as single image, (e.g. inputs/images/image1.jpg). 

 

F) You can set input as YouTube video URL, (e.g. https://www.youtube.com/watch?v=5Ds1PxDoQag ). 

 

python  interface.py  --model <model_path>   --input <video_path>   --output  <folder_path>   --name <folder_name>  --show   --gen_excel

python  interface.py  --model <model_path>   --input <camera_id>   --output  <folder_path>   --name <folder_name>  --show   --gen_excel

python  interface.py  --model <model_path>   --input <folder_videos>   --output  <folder_path>   --name <folder_name>  --show   --gen_excel

python  interface.py  --model <model_path>   --input <image_path>   --output  <folder_path>   --name <folder_name>  --show   

python  interface.py  --model <model_path>   --input <youtupe_url>   --output  <folder_path>   --name <folder_name>  --show   --gen_excel

python  interface.py  --model <model_path>   --input <folder_images>   --output  <folder_path>   --name <folder_name>  --show   
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1.3– Processing Unit 

Deployment driver can run on either GPU or CPU. You can explicitly specify the device 

needed to run on or you can let the driver automatically choose the suitable device that 

run automatically on GPU if exists. 

A) Deployment on automatic mode. 

B) Deployment on GPU specified device (e.g. --device 0)  

C) Deployment on CPU.  

1.4– Classes Filter 

You could also filter the output classes to specific classes, that mean we could exclude 

some of output classes, (e.g. we could annotate only one category such as fishes). You 

could control this filtration by yaml file which include name object that have the needed 

classes.   

• Could also use this yaml file to change names of classes. 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --device auto   

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --device <device_id> 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --device cpu 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --classes fishes_only.yaml 

names: 

    4: fish 

3 



 

 

1.5– Input Frame Size 

We could also change the input frame size that will be inferred to suite our need, that is, if 

we need to detect very small objects we can make imgsz to be large to keep the infor-

mation of the small objects. 

• Large imgsz will need more computations and therefore the speed of deployment will 

be decreased. 

• The default value of imgsz is 640 which make the input frame in shape of (384x640). 

• Imgsz must be multiple of 32. 

 

A) Infer with input shape (736x1280) to detect tiny objects. 

B) Infer with input shape (320x320) to very fast deployment. 

 

1.6– Hide Labels 

Sometimes when there are multiple objects in single frame it’s well be hard to visualize 

the scene clearly due to the labels of the bounding box, so the driver support option to re-

move the label and show only the bounding boxes in which each class has distinct box 

color. 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --imgsz 1280 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --imgsz 320 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --hide_labels 
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1.7– Save Cropped 

You could also save the cropped images from bounding boxes this could be used in many 

thing such as object classification. 

• The cropped images will saved in output/crop folder each class will have it’s folder with 

the name of the class (e.g. output/crop/fish ). 

 

 

 

 

 

 

 

 

 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --save_crop 

1.8– Confidence Threshold 

Confidence threshold parameter control the tradeoff between Precision and Recall: 

• High conf (e.g. conf>0.5) make detections high precise by removing any bounding boxes 

that have confidence lower than 0.5, this reduce the noise but also reduce recall. 

• Low conf (e.g. cong<0.5) make detection high recall by let many more bounding boxes, 

this increase probability of detecting object, but increase noise.  

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --conf <threshold_percent> 

   --conf 0.6    --conf 0.2 
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1.9– Non-maximum Suppression Threshold  

We could also control the NMS threshold to be suitable to our application, if the environ-

ment has many adjacent object from the same, it’s better to increase iou, this will make de-

tector apply to detect multiple object from the same class with small distance between them 

but also increase the chance of over annotate single object.  

 

python  interface.py  --model <model_path>   --input <media>   --output  <folder_path>   --name <folder_name>  --iou <iou_thresold> 

   --iou 0.99    --iou 0.3 
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2– Web Interface 

A Web Based interface is provided that handles deploying the ML model and shows the 

live output, with the ability to download the results. It works as a simple GUI for the CLI, in 

fact it spawns a CLI process for each client connecting to it. An online demo is available for 

testing (notice it doesn't provide high performance GPU, it is just for illustration). 
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http://34.31.203.179/

