

PREFACE
M.I.A. Robotics is a 30-person company of

interdisciplinary students from Alexandria

University which was originally founded in

2011. This being its 11th year at the MATE

ROV Competition, the company has accu-

mulated expertise in the field of underwater

robotics and Machine learning over the

years. With a steady pace towards improv-

ing the performance of each ROV.

There are numerous phyla that encom-

pass a wide range of marine organisms.

These phyla include diverse groups of ani-

mals, plants, and other organisms that in-

habit marine ecosystems. Our mission to

enhance the way we interpret deep ocean

and gather more information by utilizing AI

such as object detection.

1– INTRODCTION

 The oceans cover more than 70% of
our planet's surface, yet much of their depths
remain a mystery to us. Ocean expeditions
provide us with a unique opportunity to dive
into this enigmatic realm and unravel its se-
crets. Scientists, researchers, and explorers
from all corners of the globe have dedicated
their lives to understanding the complex inter-
play between the ocean and the planet's eco-
systems.

At the heart of ocean expeditions lies the pur-

suit of knowledge and understanding. From

mapping the seafloor and studying marine life

to investigating climate patterns and discover-

ing ancient shipwrecks, these voyages offer a

wealth of opportunities to expand our

knowledge of the ocean and its countless in-

habitants.

One of the important tools needed for

these expeditions is the classifying the un-

derwater species to gain more information

about this classification we need to local-

ize this classified species in the captured

frame, this enable us to know more about

the scene underwater by applying more

advanced algorithms such as tracking to

know about the species behavior.

Our Object Detection model classifies un-

derwater species by their unique physical

characteristics, such as body shape,

movement patterns, and distinguishing

features like arms or tentacles. We have

trained the model on a diverse dataset of

marine life, ensuring it can accurately

identify species like brittle stars

(Ophiuroidea), fish, and other echino-

derms. By focusing on key visual cues

such as the central disk shape and the

flexibility of the arms, our model can differ-

entiate brittle stars from similar species.

2-PROCESS FLOW

Iterative Approach

The iterative process, also known as the

agile process, emphasizes flexibility, adapta-

bility, and continuous improvement through-

out the project. This give as :

• Flexibility: The iterative process allows

for changes and adjustments to be made

throughout the project based on feedback,

new insights, or evolving requirements.

• Continuous feedback: feedback is incor-

porated regularly, enabling the project

team to address issues, refine models,

and make improvements incrementally.

• Rapid prototyping: The iterative process

often involves building and refining proto-

types or minimum viable products (MVPs)

to gather feedback early on and validate

model in early steps.

• Collaboration: Collaboration and commu-

nication among team members, are es-

sential in the iterative process. Regular

meetings and interactions facilitate trans-

parency and alignment.

• Quick response to changes: The itera-

tive process allows for quick adaptation to

changes in requirements, emerging tech-

nologies, or unexpected challenges. This

agility helps avoid the risk of being locked

into a suboptimal solution.

3-Gather Dataset
Gathering a dataset for object detection models re-
quires careful consideration of various factors to en-
sure that it covers a wide range of objects, perspec-
tives, and scenarios. Here is a step-by-step guide to
help you gather a dataset for object detection:

3.1- Identify data sources
• We tried to collect dataset that have the same

distribution as validation videos, then we decide
to focus on videos of NOAA Expatiations. Also
we collect from other sources to achieve general-
ization.

• We also collect data through web scrapping to
automate process of gathering dataset

3.2- Annotation
• Object detection datasets require bounding box

annotations that define the location and size of
objects within the images. There are various an-
notation tools available,

• We decide to use labelImg for easy usage and
for supporting JSON format.

3.3- Image augmentation
 Consider applying data augmentation techniques to
expand your dataset. This involves applying trans-
formations such as rotations, translations, scal-
ing, flipping, or adding noise to your existing imag-
es. Data augmentation helps to increase the diversi-
ty of your dataset and improve the model's robust-
ness.

We apply image augmentation operation with prob-
ability portion as each operation needed.

• Blurring

• Brightness

• Hue Shift

• Darkness

• Rotate

• Noise

• Horizontal Filp

3.4– Splitting Dataset

Divide your dataset into appropriate sub-

sets for training, validation, and testing.

Typically, a significant portion is allocated

for training (e.g., 70-80%), while the re-

maining portion is used for validation and

testing. This division helps evaluate model

performance and avoid overfitting.

Because we have relatively large dataset

which is 17,500 image we decide to split

our data to 85% training dataset (14,875

image), 10% validation dataset (1,750 im-

age), and 5% test dataset (88 image), for

exploiting more data in training 3,000 im-

age is sufficient for hyperparameter tun-

ing.

3.5– Dataset Analysis

When we gather our dataset we take care to

satisfy diversity in different levels, such as:

• Diversity in source: That is our dataset

come from different sources to achieve

generalization and the model become less

prone to overfit.

• Diversity in Size: That is our dataset con-

tain object of interest in different, and di-

verse sizes, this make our model could

detect large as well as small objects.

We also could increase this diversity by im-

age augmentation, but we need to tune this

operation to become effective to our need.

We also take care of randomization that

mean, to mean our model to be less bi-

ased, achieve that by:

• Shuffle Dataset: We shuffled our da-

taset to train and validate from the

same distribution this make model

less biased.

• Proportion Augmentation: We also

tune proportion of each augmentation

operation to ensure less bias dataset.

• Cover vulnerabilities: after each da-

taset version we try to cover it’s vul-

nerability.

4– MODEL

4.1– Choose Framework

There are several popular object detec-

tion frameworks available that provide

pre-built models, tools, and resources

to develop and deploy object detection

models efficiently. Here are some wide-

ly used object detection frameworks:

Most important two-stage object de-

tection algorithms:

• RCNN and SPPNet (2014)

• Fast RCNN and Faster RCNN

(2015)

• Mask R-CNN (2017)

• Pyramid Networks/FPN (2017)

• G-RCNN (2021)

Most important one-stage object de-

tection algorithms

• YOLO (2016)

• RetinaNet (2017)

• YOLOv3 (2018)

• YOLOv4 (2020)

• YOLOR(2021)

• YOLOv7(2022)

• Yolov8(2023)

Transformer-based object detection

algorithms:

DETR (2020)

DETR 2.0 (2022)

4– MODEL

4.3– RE-DETR

Why We Chose RE DETR from Ultralytics:

We decided to use RE DETR because it

builds on the innovative DETR framework,

which introduced transformers to object de-

tection, but adds significant optimizations for

real-time performance. Key features of RE

DETR include:

Efficient Hybrid Encoder: RE DETR uses a

hybrid encoder that decouples within-scale

interactions from cross-scale feature fusion,

allowing it to handle multi-scale features

more effectively. This results in reduced com-

putational costs while maintaining high accu-

racy.

IoU-Aware Query Selection: This feature

improves the initialization of object queries by

focusing on the most relevant objects in the

scene. It enhances the model's ability to ac-

curately detect and localize objects, even in

complex environments.

Adjustable Inference Speed: Unlike many

other models, RE DETR allows users to ad-

just the inference speed by modifying the

number of decoder layers used during infer-

ence, without the need for retraining.

Real-World Applications: RE DETR is par-

ticularly well-suited for applications where

both speed and accuracy are critical, Its abil-

ity to maintain high performance in real-time

makes it an ideal choice for these demanding

scenarios.

4.2– Training

We trained our RE DETR model for 100

epochs, with each epoch taking approxi-

mately 30 minutes on a T4 GPU on

Google Colab. This extensive training al-

lowed us to achieve a high mean Average

Precision (mAP) and low loss values, en-

suring the model’s effectiveness in real-

time object detection tasks.

The RE DETR model we used, rt-detr-l, is

highly optimized with 673 layers, compris-

ing 32,970,476 parameters. The model

has a total of 0 gradients and requires

108.3 GFLOPs, making it computationally

efficient while still delivering high accuracy.

The detailed summary of the model pa-

rameters is as follows: 673 layers,

32,970,476 parameters, 0 gradients,

108.3437056 GFLOPs.

During training, it took approximately 20

hours to complete 50 epochs. However,

this training duration was sufficient to

reach an optimal level of performance. We

used input images of 1024x1024 pixels to

ensure the model could accurately detect

objects across various scales, particularly

small objects.

4.4– Deployment

A) Detection Source

 we could deploy the model on different multi-

media:

• Live stream from camera.

• Static stored video.

• Videos from YouTube.

• Folder of stored videos.

• Folder of stored images.

• Single image.

B) Detection Excel

Our driver could generate a excel file that has

the stream detections with the localization in-

formation.

C) Detection Processing

Our driver could be deployed both on CPU

or GPU using CUDA for that we support

two model one is named Accurate which is

large architecture for deployed real time on

GPU, and other named Fast which is small

architecture for run real time on CPU.

D) Cropped Bounding boxes

Our driver could extract cropped bounding

box and save them.

1- Command Line Interface (CLI)
We build an easy to use CLI to deploy the model with a set of feature to infer in different

types of inputs, generate the needed output, and display the stream in suitable manner.

Also this CLI not only for user interface but also it’s the base backend of our Web interface

1.1– Arguments
CLI has many arguments to interact with and this arguments serve different aspect of de-

ployment process such as take stream, and customize output. (most of this arguments have

default values except one that have *).

Argument Description

model * Path to model used

input * Path to input multimedia (e.g. --input inputs/video1.mp4)

output Path to output folder that will have the generated output (if not exist it will be created)

device Name of device used GPU/CPU (e.g. if CPU: --device cpu, If GPU: --device 0)

name Name of the generated outputs such as annotated video and output excel

update_excel The number of frames to update output excel (e.g. if each frame --update_excel 1, -1 if only at end)

conf Confidence threshold of bounding box generated. (e.g. --conf 0.5)

iou IOU threshold of Non-maximum suppression. (e.g. --iou 0.2)

classes Path to classes file which is yaml file has the classes name (used to filter output classes also).

imgsz Input frame size to the model (e.g. —imgsz 640 -> 384x640, —imgsz 1280 -> 736x1280)

show To show annotated stream (e.g. --show -> to show stream)

gen_excel To generate and save annotation excel file (e.g. --gen_excel -> to save excel)

save To save annotated stream (e.g. --save -> to save stream)

save_crop To save cropped bounding boxes of the stream (e.g. --save_crop -> to save cropped images).

hide_labels To hide information of bounding box such as name and confidence for lite display (e.g. --hide_labels -> to Hide)

port Port to stream on if needed (e.g. --port 5000 (to stream on 5000))

1

1.2– Multimedia Inputs

A) You can set input as static video file that exist in our local machine.

B) You can take input as live stream from connected device (e.g. --input 0)

C) You can set input as folder of videos and the output will be the annotated images.

D) You can set input as folder of images and the output will be the annotated images.

E) You can also set input as single image, (e.g. inputs/images/image1.jpg).

F) You can set input as YouTube video URL, (e.g. https://www.youtube.com/watch?v=5Ds1PxDoQag).

python interface.py --model <model_path> --input <video_path> --output <folder_path> --name <folder_name> --show --gen_excel

python interface.py --model <model_path> --input <camera_id> --output <folder_path> --name <folder_name> --show --gen_excel

python interface.py --model <model_path> --input <folder_videos> --output <folder_path> --name <folder_name> --show --gen_excel

python interface.py --model <model_path> --input <image_path> --output <folder_path> --name <folder_name> --show

python interface.py --model <model_path> --input <youtupe_url> --output <folder_path> --name <folder_name> --show --gen_excel

python interface.py --model <model_path> --input <folder_images> --output <folder_path> --name <folder_name> --show

2

1.3– Processing Unit

Deployment driver can run on either GPU or CPU. You can explicitly specify the device

needed to run on or you can let the driver automatically choose the suitable device that

run automatically on GPU if exists.

A) Deployment on automatic mode.

B) Deployment on GPU specified device (e.g. --device 0)

C) Deployment on CPU.

1.4– Classes Filter

You could also filter the output classes to specific classes, that mean we could exclude

some of output classes, (e.g. we could annotate only one category such as fishes). You

could control this filtration by yaml file which include name object that have the needed

classes.

• Could also use this yaml file to change names of classes.

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --device auto

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --device <device_id>

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --device cpu

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --classes fishes_only.yaml

names:

 4: fish

3

1.5– Input Frame Size

We could also change the input frame size that will be inferred to suite our need, that is, if

we need to detect very small objects we can make imgsz to be large to keep the infor-

mation of the small objects.

• Large imgsz will need more computations and therefore the speed of deployment will

be decreased.

• The default value of imgsz is 640 which make the input frame in shape of (384x640).

• Imgsz must be multiple of 32.

A) Infer with input shape (736x1280) to detect tiny objects.

B) Infer with input shape (320x320) to very fast deployment.

1.6– Hide Labels

Sometimes when there are multiple objects in single frame it’s well be hard to visualize

the scene clearly due to the labels of the bounding box, so the driver support option to re-

move the label and show only the bounding boxes in which each class has distinct box

color.

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --imgsz 1280

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --imgsz 320

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --hide_labels

4

1.7– Save Cropped

You could also save the cropped images from bounding boxes this could be used in many

thing such as object classification.

• The cropped images will saved in output/crop folder each class will have it’s folder with

the name of the class (e.g. output/crop/fish).

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --save_crop

1.8– Confidence Threshold

Confidence threshold parameter control the tradeoff between Precision and Recall:

• High conf (e.g. conf>0.5) make detections high precise by removing any bounding boxes

that have confidence lower than 0.5, this reduce the noise but also reduce recall.

• Low conf (e.g. cong<0.5) make detection high recall by let many more bounding boxes,

this increase probability of detecting object, but increase noise.

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --conf <threshold_percent>

 --conf 0.6 --conf 0.2

5

1.9– Non-maximum Suppression Threshold

We could also control the NMS threshold to be suitable to our application, if the environ-

ment has many adjacent object from the same, it’s better to increase iou, this will make de-

tector apply to detect multiple object from the same class with small distance between them

but also increase the chance of over annotate single object.

python interface.py --model <model_path> --input <media> --output <folder_path> --name <folder_name> --iou <iou_thresold>

 --iou 0.99 --iou 0.3

6

2– Web Interface

A Web Based interface is provided that handles deploying the ML model and shows the

live output, with the ability to download the results. It works as a simple GUI for the CLI, in

fact it spawns a CLI process for each client connecting to it. An online demo is available for

testing (notice it doesn't provide high performance GPU, it is just for illustration).

Excel

 Display

Annotated

Video

YouTupe

URL

Backend

Terminal

7

http://34.31.203.179/

