SAILFISH ROV Your Eye inside Ocean

<mark>Supervisor</mark> DR. Hossam Ramadan

<mark>CEO</mark> 25" Ali Essam

Mechanical Members: 24" Rafat Mohamed /Head 24" Abdelrahman Wael 25" Fady Samy 25" Abdelrahman Saadawy 25" Abdallah Mostafa 25" Mohamed Ramadan 25" Mohmed Eid 25" Nabil Ibrahem 25" Yussef Anter 25" Marsleno Ayman

- 26" Eslam Abdelhamed
- 26" Adham Tharwat

Non-Technincal Members:

25" Ali Essam/ Head
24" Rola Hany
24" Mohamed Medhat
24" Abdelrahman Mohamed
25" Abdelrahman Khaled
25" Abdelrahman Nasser
25" Nouran Ayman
25" Roaa Tolba
26" Mohamed Elsayed
27" Ahmed Yasser

Software Members:

- 25" Mohamed Samir/ Head
- 25" Ahmed Lotfi
- 25" Abdelrahman Alaa
- 25" Mohsen Mostafa
- 25" Mohamed Elsayed
- 26" Jack Isaac
- 26" Atif Ehab
- 27" Mohamed Ahmed

Hardware Members:

25" Omar Salah/ Head
24" Mohamed Saad
25" Amr Mahmoud
25" Nader Elsaeed
25" Ali Ibrahim
26" Ibrahem Mohamed
26" Zeyad Hisham

Mentors:

Mohamed Hassan Shehata Abdallah El Zamzamy Eslam Badran Mohamed Metwaly Omar Sa'eed Elsayed Hamoda Toqa Ayob

NAVY

Non rov device '24

Higher Technological Institute 10th of Ramadan City

Sharqia, Egypt

Website https://www.sailfishrov.com/

NON-ROV

Non-ROV

Regarding the features of our remotely operated vehicle (ROV), it is not just a remote-controlled device, but there is also an autonomous system known as the non-ROV system. This non-ROV system assists in displaying and examining the seabed and enables exploration in deeper areas without the need for electrical or air stations. There are a few points we should mention before discussing design

Vertical float

• Buoyancy

Regarding the features of our remotely operated vehicle (ROV), it is not just a remotecontrolled device, but there is also an autonomous system known as the non-ROV system. This non-ROV system assists in displaying and examining the seabed and enables exploration in deeper areas without the need for electrical or air stations. There are a few points we should mention before discussing design.

• Buoyancy engine

Our company specializes in developing and implementing sophisticated buoyancy engines, tailored for various applications:

1 Internal reservoir
 2 External reservoir
 3 Actuator

These components form the core of our buoyancy engines, enabling precise control for vertical movement or forward propulsion in vehicles

Mechanical Design

In our design, we have selected a syringe as the internal reservoir and the fluid surrounding the

non-ROV as the external reservoir. To control the flow of fluid, we have chosen a stepper motor as the actuator. Additionally, we have incorporated a specially designed hand to assist the ROV in holding the non-ROV. The non-ROV itself is constructed using PVC and Polyamide, which ensures a lightweight structure that aids in its buoyancy.

The primary concept behind the non-ROV is that when the ROV grasps and positions it in the designated area, the buoyancy, weight, and materials of the non-ROV work together to maintain a vertical position. Once the ROV releases the non-ROV, a vertical floating action begins. This is achieved by utilizing the syringe to suction the surrounding fluid, employing pulses from the motor. Once the suction process is complete, the non-ROV settles on the seabed, successfully achieving the desired vertical float.

Figure 1 vertical float

BORN TO DIVE

NON-ROV

• Electrical control

Overview of the vertical float mechanism and its components: Arduino Uno, NEMA 23 motor TB6600, and SIM 800L module.

Objective: Enable controlled sinking and floating in water while transmitting UTC time information via SMS, company number, pressure data, and depth data.

Components and Functionality

Arduino Uno as Central Controller:

- Responsibilities: Managing the NEMA 23 motor TB6600 and SIM 800L module.
- Motor control: Manipulating the vertical movement of the float within water.
- SMS transmission: Facilitating the sending of UTC time information upon float resurfacing.
- Pressure sensor (BMP-180): Monitoring pressure changes while sinking and floating in water.

Power Supply Configuration:

- Utilization of eight D-type batteries providing a combined voltage of 12 volts.
- Direct power supply for Arduino Uno and NEMA 23 motor TB6600.
- Voltage conversion for SIM 800L module: Introduction of a converter due to its requirement of 5 volts.

Safety Features:

- Integration of a sealed push button for convenient activation and deactivation.
- Inclusion of a 6-Ampere fuse as a protective measure within the system to ensure safe operation.

• Vertical Float SID

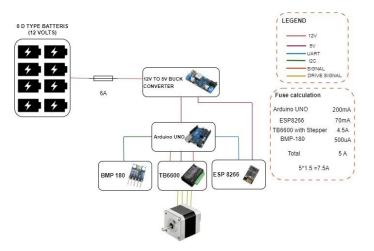


Figure 2 Vertical Float SID

BORN TO DIVE

