

1

MATE ROV competition
HydroVinci technical documentation
Marine Advanced Technology Education Remote Operated Vehicule

Sascha CAUCHON, Nathan CHOUKROUN, Mael DARNAUD, Mathurin DE CRECY, Camille FARRA,
Sarah OUNES, Matthieu PECORARO, Hugo PELTIER

2

1 TABLE OF CONTENTS
2 Introduction ... 4

2 Abstract ... 4

2 Team presentation .. 5

3 Budget .. 5

4 Safety Features .. 7

4.1.1 Electrical Safety ... 7

4.1.2 Strain Reliefs ... 7

4.1.3 Motor Shrouds ... 7

5 Mechanical Design ... 8

5 Overview .. 8

5 Structure.. 9

5.2.1 ROV .. 9

5.2.2 Float ... 9

5 Movement .. 9

5.3.1 ROV .. 9

5.3.2 Stabilization .. 10

5.3.3 Float’s buoyancy system .. 10

5 Manipulation .. 11

5.4.1 Arm... 11

5.4.2 Control ... 11

5.4.3 Hand ... 11

5 Manufacturing .. 9

5.5.1 3D Printing... 9

5.5.2 Machining ... 9

6 Electrical Design .. 13

6 Overview .. 13

6.1.1 Architecture .. 13

6.1.2 Safety ... 21

6 PCB Design .. 22

6.2.1 ROV .. 22

6.2.2 Float ... 23

3

6 PCB Integration .. 24

6.3.1 Mechanical Overview ... 24

6.3.2 Cable management .. 25

7 Software .. 25

7 Rust Programming .. 25

7.1.1 Efficiency and Memory Safety .. 25

7.1.2 Asynchronous Programming ... 26

7.1.3 Extensive Library Support .. 26

7.1.4 Motor and Servo Control ... 26

7.1.5 Stabilization System ... 28

7.1.6 Summary .. 29

7 General Architecture ... 29

7.2.1 Onboard Raspberry Pi 4 .. 29

7.2.2 Control Box Laptop .. 29

7.2.3 Communication and Network Setup .. 30

7.2.4 Data Flow and Command Transmission ... 30

7.2.5 Summary .. 31

8 Conclusion .. 31

4

2 INTRODUCTION

2 ABSTRACT
This document proudly showcases HydroVinci’s innovative devices for the 2024 MATE ROV Pioneer
Class competition, marking the historic debut of the first French team in this prestigious event.
HydroVinci, a dynamic technical club from the Engineering School Léonard De Vinci in Paris,
specializes in cutting-edge sea technology. This year, the club ambitiously set out to compete in
the MATE ROV World Championship. Over the past six months, eight dedicated engineering
students, ranging from their second to fourth year, have meticulously designed and developed both
an ROV and a Float to meet the rigorous standards of the competition. In this document, we delve
into our design choices, the challenges we faced, the intricate technical details of our creations,
and our remarkable journey towards bringing this project to life.

5

2 TEAM PRESENTATION
This project has been both a significant technical challenge and a test of our team's human and
management skills. We assembled a team of 8 engineering students to handle the technical
development while also managing communication and seeking partnerships for funding.

We divided the project into three categories: mechanics, electronics, and programming, each led
by a team leader who excelled in their respective field. Overseeing operations, in charge of project
management and mechanics is Camille Farra. His primary responsibilities included coordinating
all teams and members, planning project phases, seeking funding, managing costs and budgets,
and communicating about our work and activities. Concerning mechanics, its responsibilities
included designing the physical structure of the ROV, such as the frame, buoyancy systems, the
arm and arm controller, the Float, and waterproof enclosures. The work also focused on
developing and installing the propulsion system to ensure efficient underwater navigation.
Additionally, designing and implementing tools for underwater tasks. Rigorous testing was crucial
to ensure reliable performance of all mechanical components. Key achievements of the team
included successfully designing a lightweight yet robust frame, implementing an efficient
propulsion system, and developing a mechanical arm capable of various underwater operations.

The AI&IT team, led by Mathurin de Crecy and including Sascha Cauchon, Mael Darnaud, and
Sarah Ounes, was responsible for writing and maintaining the control software for the ROV,
including the user interface and navigation algorithms. They also developed software for AI-
powered tasks and data analysis processes, ensuring seamless integration between software and
hardware components. Achievements of the team included mastering a new programming
language designed for embedded systems, Rust, implementing advanced navigation algorithms,
and developing reliable data processing capabilities.

The electronics team, led by Matthieu Pecoraro and supported by Hugo Peltier and Nathan
Choukroun, was responsible for designing and assembling electronic circuits for power
distribution, control systems, and sensor interfaces. They integrated various sensors, including
cameras and environmental sensors, into the ROV system, and developed a power management
system to ensure stable, safe, and efficient operation. Major achievements of the team included
designing a reliable power distribution network, integrating high-performance sensors, and
developing robust communication protocols.

3 BUDGET
Statistics of our budget for the project, including fabrication, components and travel expenses to
the competition, travel not included.

Total actual expenses 1,252.70 €

Project budget: 7,500.00 €
Left budget: 6,247.30 €

Budget used: 16.70%

6

Repartition of the actual expenses between the ROV and the float.

ROV : 83.57% FLOAT : 16.43%

Details of our expenses to date.

FLOAT

Déjà acheté / Already bought €205.84

Eléments Items Prix unitaire / Unit price Quantity
Quantity

Delivery Total

Coupleurs d'arbres Shaft coupler 7.88€ 1 0.00€ €7.88

Lot 5 joints toriques Set of 5 O-rings 12.64€ 1 0.00€ €12.64

Tuyeau 80 mm 80mm hose 8.85€ 1 0.00€ €8.85

Lot écrous 6 mm Set of 6 mm nuts 3.50€ 1 0.00€ €3.50

Tiges filetés L 1m D
6mm

Threaded rods L 1m D
6mm

0.90€ 2 0.00€ €1.80

Pack 2 batteries 9V Pack 2 batteries 9V 11.50€ 1 0.00€ €11.50

Cylindre Acrylique 1 m Acrylic Cylinder 1 m 31.52€ 1 14.40€ €45.92

Accu Rechargeable 9V Accu Rechargeable 9V 14.90€ 2 0.00€ €29.80

Filament PETG PETG filament 23.58€ 1 0.00€ €23.58

Lot 5 Joint Torique 80 Lot 5 O-ring 80 12.64€ 1 0.00€ €12.64

Lot 5 Joint Torique 80 Lot 5 O-ring 80 5.49€ 1 0.00€ €5.49

Capteur de pression Pressure sensor 22.00€ 1 0.00€ €22.00

Batteries 9V Energizer Batteries 9V Energizer 4.99€ 2 0.00€ €9.98

Batteries 9V G20 Batteries 9V G20 2.29€ 2 0.00€ €4.58

Cartes à trous Hole cards 4.83€ 1 0.00€ €4.83

Gaines thermo Gaines thermo 1.62€ 1 0.00€ €1.62

Clé multi-diamètres Multi-diameter wrench 2.77€ 1 0.00€ €2.77

Capteur de pression Pressure sensor 10.86€ 1 0.00€ €10.86

ROV

Déjà acheté / Already bought €1,046.86

Eléments Items Prix unitaire / Unit price Quantity
Quantity

Delivery Total

Moteurs Motors 54.79€ 9 28.75€ €521.86

Servomoteur Servo motor 11.26€ 1 0.00€ €11.26

Gaine cable Cable sheath 7.99€ 1 0.00€ €7.99

Jumper wires Jumper wires 11.59€ 1 0.00€ €11.59

Lot 10 potentiomètres Lot 10 potentiometers 6.99€ 1 0.00€ €6.99

Presse-étoupes Cable glands 0.49€ 5 8.33€ €10.78

Jeu d'écrous Nut set 11.99€ 1 0.00€ €11.99

Rangement Storage 6.99€ 1 0.00€ €6.99

Pied à coulisses Caliper 3.53€ 1 0.00€ €3.53

Câbles Cables 7.87€ 1 0.00€ €7.87

Fusibles + supports Fuses + holders 13.89€ 1 0.00€ €13.89

Lot de 3 PCA Lot of 3 pcs 14.39€ 1 0.00€ €14.39

DC-DC converter x2 DC-DC converter x2 1.99€ 1 0.00€ €1.99

LM2596S x2 LM2596S x2 1.99€ 1 0.00€ €1.99

Monture caméra Camera mount 1.13€ 1 0.00€ €1.13

Connecteurs Connectors 2.73€ 1 0.00€ €2.73

Lot de sockets Lot de sockets 2.52€ 1 0.00€ €2.52

7

Fusibles 1A n1 1A n1 fuses 5.99€ 1 0.00€ €5.99

Connecteurs 9V 9V connectors 1.35€ 1 0.00€ €1.35

Fusibles 1A n2 1A n2 fuses 1.61€ 1 0.00€ €1.61

Boitiers piles AA AA battery boxes 2.84€ 1 0.00€ €2.84

Radiateurs Radiators 2.26€ 1 0.00€ €2.26

Seringues x2 Seringues x2 2.28€ 1 0.00€ €2.28

Tube PMMA 80 Tube PMMA 80 135.74€ 1 20.00€ €155.74

Anderson PCB
connectors

Anderson PCB connectors 0.64€ 20 0.00€ €12.74

Fuse holders Fuse holders 4.33€ 4 0.00€ €17.32

5V Fan 5V Fan 7.84€ 3 0.00€ €23.52

USBA-USBC cable USBA-USBC cable 1.57€ 2 0.00€ €3.14

USBC-USBC cable USBC-USBC cable 4.55€ 2 0.00€ €9.10

5V Laser 5V Laser 5.57€ 3 0.00€ €16.71

PCBs PCBs 80.35€ 1 0.00€ €80.35

Composants PCBs PCB components 72.42€ 1 0.00€ €72.42

4 SAFETY FEATURES

4.1.1 Electrical Safety
Ensuring electrical safety is paramount in the design and operation of our ROV system. For detailed
guidelines and measures regarding electrical safety, please refer to section 6.1.2 of this document.
This section outlines comprehensive strategies and precautions implemented to mitigate potential
risks and hazards associated with electrical components and systems, safeguarding both
equipment and personnel throughout the ROV's deployment and operation.

4.1.2 Strain Reliefs
In the design of the underwater robot's connection system, strain relief mechanisms have been
incorporated to protect the integrity of the data and power cables. Specifically, springs have been
utilized as strain relief components. These springs are affixed at one end to the cables and at the
other end to either the robot’s structure or the ground-based generator. This configuration ensures
that any tensile forces exerted on the cables are absorbed by the springs, which extend to
accommodate the force. Consequently, the cables are shielded from direct stress, thereby
reducing the risk of damage due to pulling or stretching. This system enhances the overall
durability and reliability of the electrical connections essential for the robot’s operation.

4.1.3 Motor Shrouds
To ensure the safety of personnel and prevent foreign objects from touching the propellers, the six
thrusters are equipped with protective grills that were designed and 3D printed using PLA. These
grills are installed on both sides of each propeller. The grills serve as a physical barrier, effectively
preventing fingers or objects from accidentally entering the propeller area and causing injury or
damage. This safety measure is crucial for maintaining a secure operational environment and
ensuring the longevity of the propulsion system.

8

5 MECHANICAL DESIGN

5 OVERVIEW
The ROV is a multi-purpose device aiming to move around water, manipulate objects with
precision, analyze and identify objects and sounds, and deploy a probe in a defined zone.

The ROV is designed as a platform for its arm. It needs to be perfectly balanced and stable.
It has six thrusters, three with a vertical thrust direction and three with a horizontal thrust
direction. This gives the ROV three supporting points on the horizontal plan making it able
to stay perfectly stable. The other three thrusters are oriented in a way that makes the ROV
capable of translating in all directions as well as rotating around itself. Most of the
thrusters are away from the ROV’s center giving them a lever force that easily moves the
robot around.

All the electronic components are placed in the “heart” of the device that is a PMMA tube.
Its orientation gives the camera a clear and large vision field of the exterior. The frame is
made from aluminum and 3D printed secondary components to make the assemblage
easier.

The arm is placed under the ROV’s center of mass and stabilizes the robot acting as a keel.
Its position limits variations of the ROV’s center of mass when carrying various payloads.

The Float is a tube featuring a buoyancy system and a pressure sensor. It is powered by
two 9V alkaline batteries and controlled by an Arduino Nano.

9

All components are displayed in the device in a way lowering the center of mass as much as
possible. The electronic circuits are at the top of the Float to ease communication at the surface.
There are four landing skids on the device to avoid chocs at the bottom of the pool.

5 STRUCTURE

5.2.1 ROV
The frame of the ROV is built around its core and supports all external components such as the arm
and thrusters. This frame, machined from aluminum using a 3-axis CNC, has a fork shape. This
design provides three main points of thrust and allows the arm to approach objects closely. At the
heart of the ROV is an 80x330 mm PMMA tube housing all electronic components. The tube is
sealed with two aluminum covers, held together by four threaded shafts, which also support the
arm.

5.2.2 Float
The Float’s structure is the same as the ROV’s core for practical reasons. It is a 80x305 mm PMMA
tube that is sealed by two aluminum covers. One specificity is that the tube was shortened to avoid
a too important Archimedes' buoyancy force. In order to operate the buoyancy system that is
longer than the tube, a specific section has been added to the top cover that allows just enough
space for the buoyancy system to work.

5 MOVEMENT

5.3.1 ROV
The ROV moves thanks to 6 thrusters that are carefully placed and oriented around it. Three motors
have a vertical thrust direction and allow vertical movement and planar stabilization. Two motors
are placed on the sides of the ROV, allowing forward and backward translations. Those two motors

10

are angled at 20° relative to the forward-aft axis of the device. Consequently, the direction
perpendicular to their thrust direction passes through the center of mass. Helped by the third
horizontal thruster at the back of the device, they allow the ROV to rotate around itself. Finally, with
correct thrust distribution among those three same motors, the ROV can translate on the right-left
axis.

5.3.2 Stabilization
The ROV is meant to stay perfectly horizontally. This is made possible by the three support points
that are the vertical thrust engines. Using a gyroscope and a PID controller, those three motors
react to any perturbation to keep the ROV horizontal without any human intervention.

5.3.3 Float’s buoyancy system
The Float’s buoyancy system is a syringe that fills and empties with water, changing the device’s
density. A high torque electric motor that perfectly fits in the syringe is attached to the syringe’s
piston. The engine’s axle is connected to a threaded shaft and rotates in a nut moving all the
system with the piston upward or downward, allowing the syringe to fill or empty itself.

11

5 MANIPULATION

5.4.1 Arm
Our ROV is equipped with a 5-axis robotic arm mounted with a 3-fingers plier. Its purpose is to
reach, grab and collect any kind of object. The main reason for creating such an arm, instead of a
simpler craw or plier, resided in only moving the plier via a precision arm instead of moving the
entire ROV less accurately. To achieve this, we added 5 servos and a controller.

5.4.2 Control
The control of the arm is made through a “physical twin”. This twin is part of the control
system and when moved, the movement is perfectly replicated on the real arm of the ROV.
It is composed of 5 potentiometers, powered in series and carry the signals to an Arduino
Nano. The signals are then transmitted to the ROV through a python script running on the
computer.

(see Elec & soft)

5.4.3 Hand
The hand has three fingers allowing it to grab big objects as easily as tiny objects. It is operated by a
servomotor and a set of connecting rods.

12

The hand is made of PLA for prototyping and is machined in aluminum for the final assembly.

13

6 ELECTRICAL DESIGN

6 OVERVIEW

In this section, we provide an overview of the electrical architecture for both our vehicles: the ROV
and the float. All the electronic components are mounted on PCBs, which were entirely designed
and developed by our team. Miniaturization was a crucial aspect of our design process, ensuring
that all circuits are compact and efficient. This meticulous approach allowed us to optimize the
performance and reliability of our systems, meeting the stringent requirements of the competition.

6.1.1 Architecture

Electronic architecture is a critical factor in the design of efficient PCBs. By carefully planning and
optimizing the layout and connections of each component, we ensure that our systems perform
reliably and effectively. Below, we present the different choices made by our team for the
components of the system, illustrating the fundamental design before the implementation on
PCBs.

6.1.1 ROV

6.1.1.1.1 Raspberry

Figure 1 : Raspberry Pi 4 Model B 8Gb.

14

We chose to use a Raspberry Pi as the central processing unit for our ROV and float due to its
versatility, compact size, and robust community support. The Raspberry Pi provides the
computational power needed to handle complex tasks such as real-time data processing, sensor
integration, and control algorithms. Additionally, it supports a wide range of peripherals and
interfaces, making it an ideal choice for our modular design.

An essential aspect of our implementation is that all software running on the Raspberry Pi is coded
in Rust. Rust offers memory safety and concurrency advantages, which are critical for the reliability
and performance of our system. For detailed information on our software development process
and the advantages of using Rust, please refer to section 6.1.1 of this document.

6.1.1.1.2 LT1084.5

Figure 2 : LT1085CT-5

We selected the LT1084CT-5 as our current regulator for its superior performance in stepping down
voltage to a stable 5V output, crucial for the reliable operation of our system. Unlike the L7805,
which can only handle a 1 amp current draw, the LT1084CT-5 is capable of delivering up to 6 amps
of current, making it an ideal choice for powering multiple components with high current demands.

One LT1084CT-5 regulator is dedicated to powering the Raspberry Pi, the PCA9685, and various
sensors, which together require a maximum of 4 amps. This ensures that these critical
components receive a consistent and sufficient power supply for optimal performance. Another
LT1084CT-5 is used to power the servomotors of the robotic arm, which also require a stable 5V
supply to operate effectively.

15

The use of the LT1084CT-5 regulators ensures that each part of our system receives the necessary
power without the risk of overload or instability, contributing to the overall efficiency and reliability
of our ROV and float designs.

6.1.1.1.3 MPU 6050

Figure 3 : MPU6050 Module

We chose the MPU6050 module for our ROV due to its integrated 3-axis gyroscope and 3-axis
accelerometer, which provide precise motion tracking and orientation data. This module is
essential for achieving accurate and responsive stabilization of our ROV in the underwater
environment.

The MPU6050's high-performance motion sensors allow us to monitor the ROV's movements in
real-time, enabling effective stabilization and control. This is particularly important for maintaining
the ROV's balance and orientation, ensuring smooth and precise navigation.

For detailed information on how we read and utilize the data from the MPU6050 for the stabilization
of our ROV, please refer to section 6.1.1.5 of this document. This section outlines the specific
algorithms and processes we implemented to integrate the MPU6050 data into our control
systems, enhancing the overall stability and performance of our ROV.

16

6.1.1.1.4 PCA 9685

Figure 4 : PCA9685 Board

We opted for the PCA9685 to generate PWM signals for both the servos in the arm and the ESCs of
the thrusters due to its versatility and capability to control multiple motors and servos
simultaneously. With 6 motors mapped to ports 0-5 and 5 servos mapped to ports 8-12 of the PCA
board, we efficiently utilize its channels to cater to the varied needs of our ROV system.

The PCA9685's ability to provide precise PWM signals allows for smooth and accurate control of
both servos and motors, essential for tasks requiring precise movement and propulsion
underwater.

It's worth noting that the PCA boards may have a frequency difference from the asked frequency on
the order of +-5%. To counter this, we implement software calibration techniques to ensure that
the PWM signals generated by the PCA9685 meet our exact requirements. This calibration process
guarantees consistent and reliable performance across all channels, despite potential frequency
variations.

17

6.1.1.1.5 Circuit Schematic

Figure 5: Thruster Connections

Figure 6 : Raspberry Pi 4 Connections

18

Figure 7 : PCA9685 Connections

Figure 8 : Power Management

19

6.1.1 Float

6.1.1.2.1 Pressure sensor.

Figure 9 : SEN057 Sensor

We opted for the SEN0257 pressure sensor to be integrated into the float primarily for its ability to
provide precise and continuous pressure measurements during dives. While we do not utilize the
depth data for direct control purposes, it serves a critical role in providing valuable insights into the
underwater environment and the float's behavior.

The pressure data collected by the SEN0257 sensor is transmitted to the control box on the shore,
where it is processed and stored for later analysis. Although we do not graph the data in real-time,
it serves as a valuable resource for post-dive analysis and optimization.

By analyzing the pressure data from each dive, we gain a deeper understanding of the float's
performance and behavior in different underwater conditions. This information allows us to refine
our designs and improve the float's efficiency and reliability for future missions.

20

6.1.1.2.2 Arduino Nano ESP32 & Data Transmission

Figure 10 : Arduino Nano ESP32

We have selected the Arduino Nano ESP32 Card as the control unit for the float, considering its
robust communication capabilities, ease of implementation, compact size, and cost-
effectiveness.

In our search for a reliable communication protocol, we explored various options. However,
concerns about frequency interference, data loss, and overall uncertainty prompted us to discard
radio systems as a viable choice.

Our chosen approach involves integrating an Arduino board equipped with Bluetooth and WiFi
capabilities, leveraging ESP32 modules. This solution offers a seamless management of float
controls and communication protocols.

Notably, the Arduino Nano ESP32 Card's compact size, affordable price, and versatile form factor
make it an ideal choice for integration into the float's design. These factors ensure that the control
unit fits within the vehicle's limited space while also aligning with our budgetary constraints.

21

6.1.1.2.3 Circuit Schematic

Figure 11: Float Electrical Schematic

6.1.2 Safety

6.1.2 Fuses
Fuses play a crucial role in protecting our ROV and float from overcurrent situations, ensuring the
safety of both the equipment and operators. For the ROV, we employ ATO Blade Fuses, with a 25A
fuse rating, strategically placed in the electrical system (refer to Figure 8 : Power Management).
These fuses act as fail-safes, interrupting the circuit in case of excessive current flow, thus
preventing damage to components and potential hazards. Similarly, for the float, multiple 1A fuses
are installed to safeguard against overcurrent events, tailored to the specific power requirements
of its components (refer to Figure 11: Float Electrical Schematic).

6.1.2 Andersons
In compliance with competition regulations, we utilize Andersons PowerPole Connectors for the
12V connections in our ROV and float. These connectors offer a reliable and standardized
interface, facilitating quick and secure connections between various components. Their robust
design ensures efficient power transmission while minimizing the risk of accidental
disconnections, contributing to the overall safety and reliability of our electrical system.

6.1.2 Circuit protection and power smoothing
To enhance the stability and reliability of our electrical system, we implement various circuit
protection and power smoothing techniques. Diodes are strategically placed to prevent reverse
current flow, safeguarding sensitive components from potential damage. Additionally, capacitors
are employed to smooth out input voltage fluctuations and stabilize the output voltage of the
LT1084 regulators mentioned earlier. These measures not only protect our equipment from

22

electrical anomalies but also contribute to smoother operation and increased longevity of our ROV
and float systems.

6 PCB DESIGN

6.2.1 ROV

Figure 12 : ROV General PCB Layout

6.2.1 Spatial Constraint
The design of the ROV's PCB was governed by a stringent spatial constraint, driven by the need to
accommodate Anderson Powerpole connectors within a narrow 74mm inner diameter tube. This
requirement necessitated the PCB to be compact, allowing seamless integration with the
connectors while maximizing space efficiency within the confined enclosure.

6.2.1 2 Signal Layers

Figure 13 : ROV PCB Signal Planes

The ROV's PCB layout comprises four distinct layers, meticulously organized to optimize
functionality and performance. Each layer serves a specific purpose, from signal routing to power
distribution, ensuring efficient operation of the vehicle's electronic systems.

23

In particular, we use the outer most layers for signal routing to all of the diverse components on the
board.

6.2.1 2 Power Planes

Figure 14 : ROV PCB Power Planes

The power distribution within the ROV's PCB is carefully planned to minimize power loss and
heating while maximizing efficiency. A general ground plane is situated on the inner back layer,
providing a stable reference for signal integrity and noise reduction. Meanwhile, the inner front
layer houses all 12V 25Amp connections, employing adapted trace widths to mitigate power loss
and ensure reliable operation under demanding conditions.

6.2.2 Float

Figure 15 : PCB Layout of the Float

The PCB design for the float serves as the backbone of its electronic system, facilitating efficient
operation and communication in underwater environments. Tailored to meet the unique
requirements of the float, the PCB layout is optimized for compactness and functionality.

24

With a focus on reliability and performance, the float's PCB incorporates essential components
and connectors necessary for seamless integration and operation. Special attention is paid to
spatial constraints, ensuring compatibility with the vehicle's structure and components.

6 PCB INTEGRATION

6.3.1 Mechanical Overview

Figure 16 : Mechanical Integration of the PCBs

The mechanical integration of the PCBs is facilitated by a robust and versatile 3D printed internal
structure. This structure incorporates a rail system that allows for secure attachment and
alignment of the PCBs within the ROV. By providing a stable mounting platform, this design ensures
optimal positioning and functionality of the electronic components, contributing to the overall
efficiency and reliability of the system.

25

6.3.2 Cable management

Figure 17 : Cable Management Channel

Effective cable management is essential for maintaining the integrity and organization of the ROV's
electrical system. To address this, the 3D printed structure housing the PCBs features a hollow
design with a wide channel, allowing cables to pass through smoothly. This design not only ensures
neat and tidy cable routing but also minimizes the risk of tangling or interference, promoting
seamless operation and maintenance of the ROV system.

7 SOFTWARE

7 RUST PROGRAMMING

For this project, we chose the Rust language for the embedded computer unit. This choice was
motivated by several key advantages that Rust offers, particularly in the context of embedded
systems and robotics.

7.1.1 Efficiency and Memory Safety

Rust is renowned for its efficiency in memory allocation and computation. Its ownership system
ensures memory safety without the need for a garbage collector, which is crucial for real-time
applications like controlling a submarine drone. This guarantees that the system remains
performant and free of common programming errors such as null pointer dereferencing and buffer
overflows.

26

7.1.2 Asynchronous Programming

Rust's powerful asynchronous capabilities were another reason for our choice. The async/await
syntax in Rust allows for efficient non-blocking operations, which is essential when handling
multiple tasks such as motor control, sensor data processing, and communication
simultaneously. This ensures that the drone can perform complex operations without delays or
interruptions.

7.1.3 Extensive Library Support

Rust boasts a rich ecosystem of libraries (crates) that facilitate development for embedded
electronics. We leveraged several of these libraries to interface with various components of the
drone. For instance, we used the embedded-hal and rppal crates to interact with GPIO pins and
control hardware peripherals.

7.1.4 Motor and Servo Control

The Rust code is responsible for controlling the motors and servomotors of the drone. By receiving
commands from the control station via an Ethernet cable using the TCP protocol, the embedded
system can adjust the speed and direction of the motors. This is achieved through precise PWM
(Pulse Width Modulation) signals generated by the Rust program.

 1. use tokio::net::TcpListener;
 2. use tokio::io::AsyncReadExt;
 3.
 4. use linux_embedded_hal::{Delay,I2cdev};
 5. use pwm_pca9685::{Channel, Pca9685, Address};
 6.
 7. use std::error::Error;
 8. use std::thread;
 9. use std::time::Duration;
 10.
 11.
 12. #[tokio::main]
 13. async fn main() -> Result<(),Box<dyn Error>> {
 14. let listener = TcpListener::bind("0.0.0.0:12345").await?;
 15. println!("connected");
 16.
 17. let i2c_pca = I2cdev::new("/dev/i2c-1")
 18. .map_err(|e| format!("Failed to open I2C device: {:?}", e))?;
 19. //let mut delay = Delay;
 20.
 21. // Attempt to initialize PCA9685
 22. let pca_address = Address::default(); // default I2C address for PCA9685
 23. let mut pca= Pca9685::new(i2c_pca, pca_address).unwrap();
 24. //pca.init(&mut delay);
 25.
 26. pca.set_prescale(127).unwrap(); // Set frequency of PWM outputs to 50Hz
 27.
 28. pca.enable().unwrap();
 29. pca.set_channel_on_off(Channel::C2,0, 307).unwrap();
 30. pca.set_channel_on_off(Channel::C1,0, 307).unwrap();
 31. pca.set_channel_on_off(Channel::C0,0, 307).unwrap();
 32. pca.set_channel_on_off(Channel::C5,0, 307).unwrap();
 33. pca.set_channel_on_off(Channel::C4,0, 307).unwrap();
 34. pca.set_channel_on_off(Channel::C3,0, 307).unwrap();

27

 35. thread::sleep(Duration::from_millis(5000));
 36.
 37. pca.set_channel_on_off(Channel::C8,0, 307).unwrap();
 38. pca.set_channel_on_off(Channel::C9,0, 307).unwrap();
 39. pca.set_channel_on_off(Channel::C10,0, 307).unwrap();
 40. pca.set_channel_on_off(Channel::C11,0, 307).unwrap();
 41. pca.set_channel_on_off(Channel::C12,0, 307).unwrap();
 42. println!("everything is initialized");
 43.
 44.
 45. while let Ok((mut socket, addr))=listener.accept().await{
 46. println!("connection from {}",addr);
 47.
 48. let mut buf=[0u8;44];
 49. while let Ok(_)=socket.read_exact(&mut buf).await{
 50. let data_points=[
 51. f32::from_le_bytes(buf[0..4].try_into().unwrap()),//x
 52. f32::from_le_bytes(buf[4..8].try_into().unwrap()),//y
 53. f32::from_le_bytes(buf[8..12].try_into().unwrap()),//z
 54. f32::from_le_bytes(buf[12..16].try_into().unwrap()),//rot
 55. f32::from_le_bytes(buf[16..20].try_into().unwrap()),
 56. f32::from_le_bytes(buf[20..24].try_into().unwrap()),
 57. f32::from_le_bytes(buf[24..28].try_into().unwrap()),
 58. f32::from_le_bytes(buf[28..32].try_into().unwrap()),
 59. f32::from_le_bytes(buf[32..36].try_into().unwrap()),
 60. f32::from_le_bytes(buf[36..40].try_into().unwrap()),
 61. f32::from_le_bytes(buf[40..44].try_into().unwrap())
 62.];
 63. println!("received data: {:?}", data_points);
 64.
 65.
 66. let b0=data_points[6];
 67. let b1=data_points[7];
 68. let b2=data_points[8];
 69. let b3=data_points[9];
 70. let b4=data_points[10];
 71.
 72. let h2=307.0-data_points[1]*60.0;//avant gauche
 73. let h1=307.0-data_points[1]*60.0;//avant droit
 76. let h3=307.0+data_points[0]*60.0;//arrière
 77. let h4=307.0-data_points[2]*25.0+data_points[4]*20.0+data_points[5]*20.0;//vertical av
g
 78. let h5=307.0-data_points[2]*25.0-data_points[4]*20.0+data_points[5]*20.0;// vertical av
d
 79. let h6=307.0-data_points[2]*50.0-data_points[5]*30.0; // vertical ar
 80.
 81.
 82. pca.set_channel_on_off(Channel::C2, 0,h1.round() as u16).unwrap();
 83. pca.set_channel_on_off(Channel::C3, 0,h2.round() as u16).unwrap();
 84. pca.set_channel_on_off(Channel::C1, 0,h3.round() as u16).unwrap();
 85. pca.set_channel_on_off(Channel::C0,0, h5.round() as u16).unwrap();
 86. pca.set_channel_on_off(Channel::C4,0, h4.round() as u16).unwrap();
 87. pca.set_channel_on_off(Channel::C5,0, h6.round() as u16).unwrap();
 88.
 89.
 90. pca.set_channel_on_off(Channel::C8, 0,b0.round() as u16).unwrap();
 91. pca.set_channel_on_off(Channel::C9, 0,b1.round() as u16).unwrap();
 92. pca.set_channel_on_off(Channel::C10, 0,b2.round() as u16).unwrap();
 93. pca.set_channel_on_off(Channel::C11, 0,b3.round() as u16).unwrap();
 94. pca.set_channel_on_off(Channel::C12, 0,b4.round() as u16).unwrap();
 95.
 96. thread::sleep(Duration::from_millis(100));
 97. }
 98. }
 99. Ok(())

28

100. }
101.

7.1.5 Stabilization System

One of the critical aspects of our project is the stabilization system, which ensures the drone
maintains the desired orientation underwater. We implemented this using the MPU6050 sensor, a
combined accelerometer and gyroscope. The Rust code processes the sensor data to compute the
pitch and roll angles. This is done using quaternions, which are calculated from the MPU6050's
Digital Motion Processor (DMP) data. Quaternions provide a robust method for representing 3D
orientations and rotations, avoiding issues like gimbal lock that can occur with Euler angles.

20. let i2c_mpu=I2cMPU::new("/dev/i2c-1").map_err(|e| format!("Failed to open I2C device:
{:?}", e)).unwrap();
 21. let mut mpu=Mpu6050::new(i2c_mpu);
 22. let mut delay=DelayMPU;
 23. mpu.init(&mut delay).expect("erreure d'initialisation");
 24. let mut accel;
 25. let mut roll;
 26. let mut pitch;
 27.
 28. let mut mean_roll=0.0;
 29. let mut mean_pitch=0.0;
 37.
 38. let mut pid_pitch=Pid::new(0.0,90.0);
 39. let mut pid_roll=Pid::new(0.0,90.0);
 40. pid_pitch.p(1.0,90.0).i(0.1,90.0).d(0.01,90.0);
 41. pid_roll.p(1.0,90.0).i(0.1,90.0).d(0.01,90.0);
 55.
 56. let start = Instant::now();
 57. while start.elapsed() < Duration::new(10, 0){
 58. accel=mpu.get_acc_angles().unwrap();
 59. mean_roll+=accel[0].to_degrees();
 60. mean_pitch+=accel[1].to_degrees();
 61. thread::sleep(Duration::from_millis(50));
 62. }
 63. mean_pitch/=200.0 as f32;
 64. mean_roll/=200.0 as f32;
 65.
 66. println!("mpu calibrated");
 67.
 86. accel=mpu.get_acc_angles().unwrap();
 87. roll=accel[0];
 88. pitch=accel[1];
 89.
 90. roll=roll.to_degrees() as f32;
 91. roll-=mean_roll;
 92. if roll.abs()<3.0{
 93. roll=0.0;
 94. }
 95. pitch=pitch.to_degrees() as f32;
 96. pitch-=mean_pitch;
 97. if pitch.abs()<3.0{
 98. pitch=0.0;
 99. }
101. let correction_pitch=pid_pitch.next_control_output(pitch).output;
102. let correction_roll=pid_roll.next_control_output(roll).output;
103.

29

104. let new_correction_pitch=(correction_pitch+90.0)*2.0/180.0-1.0;
105. let new_correction_roll=(correction_roll+90.0)*2.0/180.0-1.0;
106.
107. println!("correction pitch: {}, correction roll:
{}",new_correction_pitch,new_correction_roll);

7.1.6 Summary

In summary, Rust's efficiency, memory safety, asynchronous programming capabilities, and
extensive library support made it an ideal choice for the embedded system of our submarine drone.
By leveraging these features, we were able to create a reliable, performant, and safe control
system that meets the demanding requirements of underwater navigation and stabilization.

7 GENERAL ARCHITECTURE

The system architecture of our project involves two main computing units: an onboard Raspberry Pi
4 and a control box laptop. Each plays a crucial role in the operation and control of the ROV.

7.2.1 Onboard Raspberry Pi 4

The onboard Raspberry Pi 4 is the core of the ROV's control system. It hosts all the Rust code
responsible for the real-time control of the vehicle. This includes managing motor functions,
servomotors, and the stabilization system. The Raspberry Pi 4 was chosen for its powerful
processing capabilities, making it suitable for handling the complex computations required for
real-time control and sensor data processing.

7.2.2 Control Box Laptop

The control box contains a laptop that serves as the user interface and primary command center
for the ROV. This laptop runs Python code to interface with user input devices, such as a joystick
and a twin arm controller. The joystick provides directional commands, while the twin arm
controller, interfaced via an Arduino, transmits the potentiometer values to the laptop. These
inputs are then translated into movement commands and sent to the Raspberry Pi.

 1. import socket
 2. import time
 3. import pygame
 4. import sys
 5. import struct
 6. import serial
 7.
 8. pygame.init()
 9. pygame.joystick.init()
10. joystick = pygame.joystick.Joystick(0)
11. joystick.init()
12. axis_indices = [0, 1, 2, 4] # indices for X, Y, Z, RZ axes
13.
14. with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
15. s.connect(('169.254.245.11', 12345))
16.

30

17. time.sleep(1)
18. arduino=serial.Serial(port='COM3',baudrate=9600, timeout=1)
19. print("fully connected")
20. try:
21. arduino.write(b"test")
22. while True:
23. val=0.0
24. power=0.0
25. pygame.event.pump()
26. data = bytearray()
27. pwm=arduino.read(100)
28. for index in axis_indices:
29. axis_value = joystick.get_axis(index)
30. #if abs(axis_value) < 0.1:
31. # axis_value = 0.0
32. #print(index, axis_value)
33. data.extend(struct.pack('f', axis_value))
34.
35. for i in pwm:
36.
37. if (i == 59):
38. print(";")
39. data.extend(struct.pack('f',val))
40. val = 0.0
41. power = 0
42. elif (chr(i).isnumeric()) :
43. val+=float(chr(i)) * pow(10, power)
44. power += 1
45. print(val)
46.
47. s.sendall(data)
48. time.sleep(0.1)
49.
50. except Exception as e:
51. print(f"Error sending data: {e}")
52.
53. pygame.quit()
54. sys.exit()
55.

7.2.3 Communication and Network Setup

To facilitate communication between the control box laptop and the onboard Raspberry Pi, we
established a local network. Instructions are transmitted over this network using the TCP protocol,
ensuring reliable and ordered delivery of commands.

The control box laptop connects to the onboard Raspberry Pi using a secure SSH (Secure Shell)
connection. This allows for remote control and monitoring of the ROV's systems, enabling the
operator to execute commands and retrieve system status updates in real-time.

7.2.4 Data Flow and Command Transmission
User Input: The operator uses the joystick and twin arm controller to generate movement
commands.
Python Interface: The control box laptop, running Python code, retrieves these commands
and processes them.

31

Arduino Integration: For the twin arm controller, an Arduino collects the potentiometer
values and sends them to the laptop.
Command Transmission: The processed commands are sent from the laptop to the
onboard Raspberry Pi over the local network using the TCP protocol.
Rust Control System: The Raspberry Pi, running Rust code, receives these commands and
executes the necessary actions to control the ROV's motors, servomotors, and stabilization
mechanisms.

7.2.5 Summary

The dual-computer architecture, with the Raspberry Pi 4 onboard the ROV and the control box
laptop, provides a robust and efficient control system. By leveraging a combination of Rust and
Python, along with an Arduino for analog input, we created a seamless integration of hardware and
software. This architecture ensures precise control, real-time response, and reliable
communication, all critical for the successful operation of the underwater drone.

8 CONCLUSION
In conclusion, our technical report encapsulates the comprehensive design, development, and
implementation of our ROV and float systems, poised at the forefront of underwater exploration.
Through meticulous planning and innovation, we have overcome numerous challenges, from
spatial constraints to electrical safety considerations, to create a robust and efficient underwater
platform. Leveraging advanced techniques such as Rust embedded software programming for
precise control and integration of a 5-axis robotic arm for versatile operations, we have crafted
systems that excel in both functionality and reliability. Our commitment to excellence is evident in
every aspect of our design, from the compact layout of PCBs to the seamless cable management
solutions. As we navigate the depths, our systems stand as a testament to the power of
collaboration, ingenuity, and perseverance in pushing the boundaries of underwater exploration.

	2 Introduction
	2 Abstract
	2 Team presentation

	3 Budget
	4 Safety Features
	4.1.1 Electrical Safety
	4.1.2 Strain Reliefs
	4.1.3 Motor Shrouds

	5 Mechanical Design
	5 Overview
	5 Structure
	5.2.1 ROV
	5.2.2 Float

	5 Movement
	5.3.1 ROV
	5.3.2 Stabilization
	5.3.3 Float’s buoyancy system

	5 Manipulation
	5.4.1 Arm
	5.4.2 Control
	5.4.3 Hand

	6 Electrical Design
	6 Overview
	6.1.1 Architecture
	6.1.1 ROV
	6.1.1.1.1 Raspberry
	6.1.1.1.2 LT1084.5
	6.1.1.1.3 MPU 6050
	6.1.1.1.4 PCA 9685
	6.1.1.1.5 Circuit Schematic

	6.1.1 Float
	6.1.1.2.1 Pressure sensor.
	6.1.1.2.2 Arduino Nano ESP32 & Data Transmission
	6.1.1.2.3 Circuit Schematic

	6.1.2 Safety
	6.1.2 Fuses
	6.1.2 Andersons
	6.1.2 Circuit protection and power smoothing

	6 PCB Design
	6.2.1 ROV
	6.2.1 Spatial Constraint
	6.2.1 2 Signal Layers
	6.2.1 2 Power Planes

	6.2.2 Float

	6 PCB Integration
	6.3.1 Mechanical Overview
	6.3.2 Cable management

	7 Software
	7 Rust Programming
	7.1.1 Efficiency and Memory Safety
	7.1.2 Asynchronous Programming
	7.1.3 Extensive Library Support
	7.1.4 Motor and Servo Control
	7.1.5 Stabilization System
	7.1.6 Summary

	7 General Architecture
	7.2.1 Onboard Raspberry Pi 4
	7.2.2 Control Box Laptop
	7.2.3 Communication and Network Setup
	7.2.4 Data Flow and Command Transmission
	7.2.5 Summary

	8 Conclusion

