ME 424 Engineering Design VIlI
Final Report

MATE ROV
Underwater Robotics Competition

Group ME-07:
Stephanie Senkevich

Chris Stollen

Kevin Grudzinski

Advisor:

Dr. Frank Fisher

“I pledge my honor that | have abided by the Stevens Honor System”
Stevens Institute of Technology

Castle Point on Hudson

MATE ROV - Final Report - Page 1

Table of Contents

(€101 T= T Y o =11 41 F PR TT TR 3
F Y 0511 = Lo PP T T PO PP T P PP PPPPPON 4
1] To (U111 o] o DO O T PP TP PP PPPRPPO 5
(70 1 a] o =] 11 To] TN 2 =Tt o | {010 [T PSS 5
L0701 a] o= 11 To] a T @ V7= T A=Y PSR 6
TS To] I 1= C] PSR OTPPR 7
TASK L — SRIPWIECK ...ttt b e e e sttt e e ettt e e e anbb e e e e anbae e e s anbreeeenneee 7
TASK 2 — SCIBNCE ...ttt ettt e ekt e e ettt e e ettt e e e ettt e e e anbee e e e anbae e e e anbeeeeenees 8
LI S I 0] 0 E1=T Y= 1110] o [PR PR PR 9
SPECITICAtIONS/CONSIIAINTSciteiie ittt ettt e et e e e sttt e e s bt e e s anbae e e e snbeeeeenneee 9
D111 oo T PP USSP PO POTPPPI 11
N O £ T L SO PP PUPRPRN 11

N 1 1011 (=] £ SO PO OU PP PPUPRPPUPPRP 12

3. BaAllaSt CONMIOL ...ttt et e e st e e st et e e s bt e aE e e e s r e e e e e e e rneeeea 14

N =1 = PSP OTP PP PRI 14

S o1 (D= 11=To l O - PP PO PPUPRPPUPPR 15

6. ElECIrONICS ENCIOSUIE........oiiiiiiiieei ittt e e s e e s e e e s nerneee e e 16

7. CAMEIA ENCIOSUIES ...ttt ettt et e e s e e e e s e e e s st e e s ne e e e s nnreeeenes 18

T 07 10 =T = ST 1117 L= PP OUP PRI 19

LS TR = =Tt 1 o] (o TP P PP UOUPPPPPPIN 19
10. Top Side SOftWare & CONLIOL.........cooiiiiiiiii et ee e 20
11. ROV SIUE SOMWAIE ...ceiiiieiieeitee ettt et s et e e s e bb e e e annbe e e e annnes 22
L1110 OO PP P PPPPPPPPPPPTNt 24
TS L. e 24
LIRS 222 PO EEPP TP PPPPPPRPN 25
L= 22 PP PPT T 26
LEAINING EXPEIIEINCES: ...uuuuutuueeeuetueeteretueeeeeeneeeseeesaeeeeeeeeeeeesaesessessssssesssssesssssssssesesssssssssssssssssssssssssssnsssssssnnnnns 26
F Y o] 01T s Lo b P PP PUPTTORTTPPPRPR 27
FiNal BUAGELt fOr QU PIOJECL:eeiiiiiiiiiieie ettt ettt e e e e e sttt e e e e e e e e s anbb e e e e e e e e e e e nnnnees 27
LCT= T 0] 1 01 0T | ST PP TP P P PU PP PUPPPUPPRP 28
Drawings of ComMpPONENntS OFf ROV ittt e e e e e e e e b e e e e e e e e e e enneees 29

LI L0 T =] =] oo PP TSP TP PP PPPPR PPN 32
L0 o L= 0] =] (0= o 35

MATE ROV - Final Report - Page 2

Glossary of Terms

ROV - Remotely Operated Vehicle

MATE - Marine Advanced Technology Education
Raspberry Pi - Microcontroller board

Beaglebone Black - Microcontroller board

Scuttle - The sinking of a ship

Bow - The front of a vessel

Stern - The rear of a vessel

Heave - The upwards/downwards motion of travel
Surge - The forwards/backwards motion of travel
Sway - Forward/backward side-to-side movement
Yaw - Twisting about the vertical axis

Roll - Right/left side-to-side movement

Top-side - System components located above the pool surface
AWG - Standardized American wire gauge

DC - Direct Current (Power)

Bulkhead - The push-pull cable termination end
IMU - Inertial Measurement Unit

MATE ROV - Final Report - Page 3

Abstract

Project Change

Our team initially began as the Autonomous Surface Vehicle (ASV) Roboboat
Competition Team. However, we decided to switch our project to the Marine Advanced
Technology Education (MATE) Center's Remotely Operated Vehicle (ROV) underwater
robotics competition. We made this switch because the ASV project had too large a
programming aspect for our team of solely mechanical engineers. Previous teams had
been interdisciplinary, with electrical and computer engineers on the team. Another
factor initiating the change was that the pre-existing boat would require very minimal
mechanical engineering input. Lastly, the updated competition rules would not be
released until mid to late December so our initial research on the competition was
based off of the previous year's rules.

MATE ROV Competition:

The Marine Advanced Technology Education (MATE) Center hosts an annual
remotely operated vehicle (ROV) underwater robotics competition. This competition is
held at the beginning of May and this year will focus on shipwreck remediation and
exploration where remains have fallen to the bottom of the ocean. Over the past two
semesters, we have successfully designed, fabricated, and tested an ROV that is
capable of exploring and documenting a simulated shipwreck at the bottom of a 20 feet
deep pool for the competition. Controlled live by a pilot from ashore, the ROV can
navigate through the makeshift shipwreck and also collect microbial samples, test the
conductivity of the water, and remove trash and debris from the shipwreck’s surrounding
area. The ROV has been designed to be modular, so components can be changed and
relocated from year to year. The ROV has also been constructed with a budget
substantially less than most other teams. We intend to prove our design at the
upcoming competition.

MATE ROV - Final Report - Page 4

Introduction

Our remotely operated vehicle (ROV) will be designed to execute several specific
tasks specified by the Marine Advanced Technology Education (MATE) Center for its
2014 MATE ROV competition. The theme of this year's competition is exploring
shipwrecks, investigating sinkholes, and performing conservation tasks in the Thunder
Bay National Marine Sanctuary in Lake Huron. Shipwrecks can be very dangerous for
humans to explore so robots are necessary to complete the task. These robots can take
video footage and survey the area and obtain data for humans to analyze. This design
project challenges the team to develop a functioning ROV robot that meets specific
requirements set forth by the competition.

The MATE ROV Regional competition will take place on May 10th at Rowan
University. If the ROV successfully passes the demonstration and safety check, we will
move on to the International Competition, which takes takes place in Alpena, Michigan
on June 26-28. There, the team will compete against over 20 other teams.

Throughout the course of the past two semesters our group has remained on
task to successfully design, fabricate, and test an operational ROV that fulfills mission
requirements. The team has done so with a modular design that can be easily modified
for future years and at a budget that is substantially less than the the budgets of most of
the other competing teams.We have had the opportunity to test the ROV’s functionality
in the water and it has successfully performed. Our current focus is to continue to test
and fine tune our ROV to fully prepare it for the Regional Demonstration Day, and then
based on feedback there prepare it for the International Competition.

Competition Background

The MATE ROV Competition is unique. Focusing on more than just engineering
skills, the MATE ROV Competition challenges teams to think as an entrepreneur, and to
develop the ability to understand the breadth of business operations. The MATE ROV
Competition is broken into 4 different levels called classes, which are Scout Class,
Navigator Class, Ranger Class and Explorer Class. Our team will be competing in the
Explorer Class competition, which is designed for university level and experienced high
school level teams.

MATE ROV - Final Report - Page 5

Figure 1: Picture of a Shipwreck on the ocean floor

Competition Overview
The competition involves three mission tasks that are split into three themes:

1. Explore, document, and identify an unknown shipwreck recently discovered in
sanctuary waters.

2. Collect microbial samples and measure the conductivity of the groundwater
emerging from a sinkhole.

3. Remove trash and debris from the shipwreck and surrounding area.

Teams are given a time limit of 15 minutes to complete all tasks. The competition
takes place in a 20 ft. deep indoor pool. No water currents will be intentionally created.
The robot must conform to an extensive list of requirements and constraints that are
outlined in the competition manual. These specifications involve documentation, safety,
mechanical properties, and electrical requirements.

Beyond the main underwater missions, the teams will be scored on a technical
report, an engineering presentation, a poster display, and a safety inspection with the
following scoring breakdown, for a total maximum score of 580 points:

Mission - 300 points

Written Technical Report - 100 points
Oral Engineering Evaluation - 100 points
Poster Display - 50 points

Safety - 30 points

MATE ROV - Final Report - Page 6

Mission Tasks

The mission consists of 3 tasks that our ROV will need to perform, with a time
limit of 15 minutes. Tasks may be done in any order and teams may switch between
tasks freely. Teams may remove the vehicle from the water for troubleshooting,
buoyancy adjustments, and payload changes, but the timer will not stop. Teams will
receive bonus points for completing all tasks before the mission time ends and penalties
for exceeding the given time or leaving debris on the pool bottom. In addition to the
mission time, teams are allotted 5 minutes to setup and test the vehicle at the mission
station and 5 minutes to break down and exit the mission station. A maximum of two
mission attempts will be allowed per team, with the higher scoring attempt used toward
the overall score.

Agar Sample Collected:

€

Sinkhole Salinity ReadiTrg: o

Figure 2: Simulated shipwreck environment

Task 1 - Shipwreck

The first task is to explore, document, and identify a newly discovered shipwreck. The
ROV will complete several different tasks to piece together the identify of the wreck. Using all of
the features, the team will identify the ship from a list of 24 possible wrecks. This first task will
involve the following steps:

e The length, width, and height of the shipwreck will be measured.

e The shipwreck will be “scanned” with sonar. This is simulated by taking pictures of the
wreck at three different target locations. The ROV must maintain alignment for five
seconds.

e A photomosaic of images taken at five distinct locations will be stitched together.

MATE ROV - Final Report - Page 7

Visual evidence of a propeller, paddlewheel, or mast head will be found to identify the
type of ship. This will allow the team to determine whether the ship was a bulk freighter,
a paddle-wheel ship, or a sailing schooner respectively.

A cargo hatch will be unlocked by turning a PVC handle to open the cargo container.
Then, the door of the cargo container must be opened to allow for identification of the
cargo. No cargo must be returned to the surface. After identification, the cargo door will
be closed and the hatch relocked. The handle and cargo door will take less than 2
newtons to turn and open.

The ROV will enter a 75 cm X 75 cm hole near the bow of the ship. Debris will be
located in front of this hole that the ROV must remove before entering the wreck.

The date the ship was built will be etched on a 5 cm x 15 cm piece of black plastic.
There will be limited visibility inside the shipwreck so a source of light may be required.
The date on the video feed must be shown to the judge.

There will be a plate at the bottom of the ship that has its home port on it. This plate will
need to be found and brought back to the surface. There, the crew will remove debris
from the plate and identify the home port of the ship.

Task 2 - Science

The second task involves collection of data, collection of a sample of a microbial mat,

replacement of a sensor string, and a calculation of the number of mussels on the exterior of the
shipwreck. The individual steps of this task are:

Investigating a sinkhole in the site area and using a conductivity sensor to measure and
record the conductivity level of the groundwater that will be overflowing out of the
sinkhole. The sensor will have to be inserted into the sinkhole at least 7 cm to get an
accurate reading. The sensor may be incorporated into the ROV or be independent of
the vehicle.

Retrieving 150 mL of microbial mat (simulated by plastic cups full of agar) from a cup
near the sinkhole and returning it to the surface.

Returning a sensor string to the surface and replacing it with a new one to the same
specific area on the pool floor. Sensor strings will have a 2 Ib dive weight attached to its
bottom. The strings will weight less than 25 newtons underwater.

Using a 50 cm x 50 cm quadrat to measure the amount of zebra mussels on the top of
the ship. The dimensions of the wreck calculated in task 1 will be used to calculate the
overall amount of mussels covering the shipwreck. The bottom surface of the ship does
not need to be calculated. Subtraction for the area of the hole does not need to be
made.

MATE ROV - Final Report - Page 8

Task 3 - Conservation

This task involves removing debris from the site area. The steps for this task are:
e Removing a capless 1 liter plastic bottle from the pool floor and returning it to the surface
e Removing a capless glass bottle from the pool floor and returning it to the surface
e Removing the anchor line rope debris that blocks the hole in the shipwreck and returning

it to the surface. The debris will weight less than 10 newtons.

e Removing an 8 Ib danforth anchor with 1.5 meter long chain attached from the bottom of
the pool and returning it to the surface. The anchor and chain combined will weigh less

than 100 newtons underwater.

Specifications/Constraints

The competition manual and rulebook lays out many requirements and constraints that our ROV
must satisfy. Combined with the mission requirements, the team
requirements that our ROV must satisfy in order to succeed in the competition. These are the

technical requirements that we designed our ROV to meet.

Technical Specification

Reasoning/Rule
Reference

ROV must grip items ranging in size from ¥4” to 2”.

Must move dinner
plate and PVC pipe to
surface

ROV must be able to lift and grip items weighing up to 100N
(22.5 Ibs)

Max weight of anchor
and chain

ROV must be able to hold position for 5 seconds

Sonar mission task

ROV must have color camera

Required for mission
tasks

Electronics housings must be waterproof to 6 meters (20 feet)

MECH-001

ROV must have a frontal area less than 75 cm x 75 cm

MECH-002: ROV
must fit into shipwreck

ROV must weigh less than 75 Ibs. out of water

MECH-002: Vehicle
must be hand
launched

Tether length must be at least 20 meters

MECH-003

MATE ROV - Final Report - Page 9

identified the core

All power must be obtained from MATE supply with 40 amp ELEC-001
fuse (no onboard batteries)

ROV system must operate on power supply of up to 56 Volts, | ELEC-002
with expected nominal voltage of 48 VDC

Any Supply voltage modification must take place on ROV ELEC-003
No voltage above 48V is permitted anywhere in the ROV ELEC-005
system

Must have 40A fuse or circuit breaker in positive power ELEC-008

supply line within 30 cm of attachment point

Power supply connections must connect via %" bolt with wing | ELEC-010
nut

All electrical connections must be sealed and not exposed to | ELEC-016
water

“Disposable motors” (exposed motors without waterproofing) | ELEC-017
are not permitted

ROV must shutdown within 5 seconds of loss of surface ELEC-019
power supply

MATE ROV - Final Report - Page 10

Design

The ROV chassis is comprised solely of standard 1 inch diameter PVC pipe and
fittings, creating the framework for the fully modular system. All PVC fittings and pipe
are primed and glued to prevent any water infiltration. Ballast tanks are comprised of
twin 4 inch diameter PVC pipe with dual internal bicycle inner-tubes; the tanks are
affixed with acetal polymer U-bolts, easy to remove, corrosion proof and lightweight. All
circuitry including the DC-DC step-downs, microprocessors, etc. are encased in a 6 inch
diameter acrylic tube. The tether inlet and outlet connections are made through a
remote pipe-manifold so as to reduce the chance of flooding. Multiple cameras are
individually housed and sealed in 1.5 inch PVC pipe to allow modularity to aid in
adjustments. Thrusters are mounted with adjustable mounts capable of incremental
angles and heights on any section of the PVC frame. The custom fabricated claw is
powered with an actuator remotely through a mechanical control cable. All the ROV
electrical wire entrances will be waterproofed using wire-gland seals.

Our ROV is controlled using software on two computers. The Beaglebone Black, a low
cost single board computer, is located inside the waterproof enclosure on the ROV. It
interfaces with all the sensors and motors and performs all of the control operations
necessary to keep the ROV operational. A laptop on the surface provides a graphical
user interface (GUI) which the operator uses to control the ROV. This interface shows
the camera feeds, the input commands being sent to the ROV, and the sensor feedback
from the ROV.

The latest version of all of the code is publicly available on GitHub, at
https://github.com/kgrudzin/Stevens-MATE-ROV. A copy of the code at this moment in
time can be found in the Appendix as well.

ROV Subsystems:

1. Chassis

The chassis was constructed with one (1) 10 foot length of 1 inch PVC pipe, in spec to
the attached assembly drawing. To ensure buoyancy force reliability the chassis was
glued and tested at depth for an extended period of time. A modular top support bar is
used to fixture the top thruster, this is constructed with ‘snap’ connectors and is not
permanently affixed or waterproofed. The picture below is representative of chassis
shape, however no mounting holes penetrate the real model..

MATE ROV - Final Report - Page 11

https://github.com/kgrudzin/Stevens-MATE-ROV

Figure 3: Design of our PVC Pipe Frame for our ROV
2. Thrusters

Thrusters for the MATE ROV project were carried over from the Autonomous Surface
Vehicle Project and the naval project Bluedart. Attached in the appendix is the thruster
documentation and functionality sheet, which was created to address disfunctional thrusters

supplied to us initially. The thrusters are manufactured by Seabotix, the model specifications are
listed below:

MATE ROV - Final Report - Page 12

Specifications

Depth
Rating: 150 meters - 500 ft
Length: 173mm - 6.8"
Width: 895mm - 3.7"
Height: 90mm - 3.5"
Weightin air: 700g 1.5lbs
Weight in
b 3500 0.77Ibs
T6mm - 3"
Propeller: 5 blade
Bollard 29kgf-64pdf-284
thrust: n
Nozzle: Type 37 Kort
Hard anodized
Housing: aluminum Figure 4: Picture here is the Seabotix thruster and specifications

. Proprietary cup seal
Shaft seal: with grease gallery

Power 80 watts continual
Requirement: 110 watts maximum

Controls: Power and Ground

Cable

Length: 500 mm-18in

Modular thruster mounts consisted of a flat-bar adapter to connect to the thruster, and a
round clamp intended to mate to the 1 inch PVC chassis framework. These aluminum mounts
were affixed with two (2) ¥%-20 x 1.5 inch long stainless steel allen bolts. Engineering drawings
for these components are attached in the appendix. This mounting design allowed for full
adjustability on the ROV framework, allowing balancing to be conducted between the drag force
and thruster force. The thruster configuration is in a vectored format to increase yaw
maneuverability and reduce the chances of snagging obstacles.

Figure 5: Thruster mount with prototype round clamp (in green)

MATE ROV - Final Report - Page 13

3. Ballast Control

Neutral buoyancy of the ROV system is achieved with nearly empty ballast inner tubes
and permanently affixed foam surrounding the bladders. For heavy lift applications the four (4)
25" inner tubes will be inflated through the tether cable. The inner tube pressure is regulated
through a pair of waterproof air actuators, one for venting and another for filling. Variable
pressure is kept in the tether supplied by a hand-pump to a maximum pressure of 40 PSI. The
standard Schrader valve stems are adapted to the 6mm tubing with modified s inch NPT to 4
inch barb adapters. To prevent back-fill of water into the ballast bladders, a miniature 1-way
valve is connected inline with the exhaust port. To reduce weight and provide adequate venting
the 4 inch PVC ballast tubes are slotted with 0.75 inch wide slots. The entire system is affixed
modularly to the frame with 1.25 inch stainless loop clamps and aluminum binding bars. The
picture below illustrates this configuration. For engineering drawings of the tube slots and
aluminum mounting bar refer to the appendix.

O

Figure 6: Ballast Tank design

4. Tether

The 50 foot long tether is comprised of 4 individual 0.25 inch lines: shielded ethernet, 8
AWG DC ground, 8 AWG DC positive, and 40 PSI air. In order to prevent kinking and knots, the
line is affixed together at 12 inch increments over the whole length. These clips (seen below)
are 3D printed and removeable in-line, making repairs very simple and fast. The clips fasten
tightly to the air line to prevent bunching, while allowing the data and power lines room to
independently shift while bending.

MATE ROV - Final Report - Page 14

Figure 7: 3D printed tether clip

Tether top-side connections include two (2) ¥ inch lugs to connect to the competition
power supply, a 15 amp fuse, and the air hand pump.

5. Actuated Claw

The actuated claw is modularly-oriented, designed to adapt to the 1 inch PVC chassis
framework. Control of the claw is supplied by a 200 Ib capable IP67 rated DC linear actuator as
seen below. In order to transfer this power to the claw a high-strength stainless push-pull rod is
interfaced between the two component systems. The cable is attached to the actuator through
an adaptable clamping system. This system relies on aluminum clamps for strength, and plastic
inserts for getting the right contours of the actuator body. In the event of a design change, new
clamp inserts can be printed to change the mounting orientation of the actuator.

Figure 8: Picture and drawing of the Linear actuator

MATE ROV - Final Report - Page 15

On the other end of the push-pull cable is the claw clamping and interfacing manifold,
which is positioned to the front and center of the ROV. The claw, originally intended to operate
on a parallel jaw design, has one fixed lower jaw and a moving upper jaw. The upper jaw
operates as a complex 4-bar linkage, providing a motion pattern to assist the collection of
debris. Upon closing, the upper jaw lowers and ‘pulls-in’ towards the lower fixed jaw, making the
ROV’s location less critical. In the event that a more effective jaw design is created the jaws are
replaceable, through 3D printing, laser cutting, or machining. To affix the push-pull rod to the
gripper mount the cable’s bulkhead is clamped with six (6) set screws. The jaw design is shown
below, engineering drawings can be found in the appendix.

Figure 9: CAD picture of the functioning claw design grabbing a water bottle

Limitations to the jaw in early testing are caused by the stainless high-strength push-pull
rod. The minimum bending radius of the thick cable is very large, and prevents easy mounting
on board the ROV frame. Both cable bulkhead mounts are very robust however, so severe
bending stress is unforeseeable.

6. Electronics Enclosure

Upon attaching to the ROV frame, the tether package is affixed in two (2) locations to
avoid excessive strain. Primary wire inputs and outputs are routed through an eight (8) port pipe
manifold, consisting of % and 2% NPT fittings. This pipe manifold is routed directly into the
electronics enclosure through a 2¥4 flexible line. The port usage is listed below:

1. DC ground
2. DC positive
3. Shielded Ethernet

MATE ROV - Final Report - Page 16

Thruster 1
Thruster 2
Thruster 3

DC claw actuator
Air actuator cable
% NPT SPARE

© N OA

Permanent connections are made through a 1 inch NPT potted PVC fitting. These
connections include the three Raspberry Pl cameras and the potted IMU chip. The potting
compound utilized for sealing was two part Urethane. While using the pipe-manifold reduces the
chances of leaking water coming into direct contact with critical electronics, the non-permanent
IP67 wire glands are not guaranteed seals and leaks are common. Upon further testing the wire
glands will be sealed from underneath with silicone for a semi-permanent solution.

The 6 inch acrylic tube was sealed with identical custom delrin end-caps, one modified
to accept the wire inputs. To guarantee a waterproof seal two (2) O-rings were used on each
end-cap. The electronic enclosure model can be seen below.

Figure 10: Picture of our electronics enclosure made from 6 inch acrylic tube with all the electronics neatly mounted
inside the tube

Internal components were modeled in order to reach a high density pack arrangement.
Extra space was allotted for the Beaglebone black for control cables, and the slack cable
present upon closing the tube. Small details include custom length stand-offs, a tray-sliding
mount, finger-pull hole in front, and the Stevens Institute name on the secondary voltage step-
down insert. Additional holes and slots were included to zip-tie loose cables and add snap-fit
inserts such as the secondary step-down tray. The electronics tray laser-cut profile with wire-
management holes can be seen below.

MATE ROV - Final Report - Page 17

oL BVIENS INSTITOINE

Figure 11: The electronics tray laser-cut profile with wire-management holes

7. Camera Enclosures

There are three (3) onboard color cameras onboard the ROV. These cameras cover the
front view, left side view, and claw view. Standard Raspberry Pi cameras are utilized, sealed
inside 1.25 inch PVC piping. In order to create a clear viewing window, ¥ inch acrylic sheet was
laser cut to size and screwed to a modified PVC mounting flange with eight (8) ¥%-20 bolts. To
provide a wide range of modular adjustability, a singular silicone loop clamp was used with a
custom aluminum camera tube adapter to allow for a wide range of motion. This allows tilting,
sliding, pivoting, and turning of the lens on the chassis framework to adjust to nearly any desired
viewing angle. The silicone cushioning prevents undesired movement, while adding dampening
against shocks.

MATE ROV - Final Report - Page 18

Figure 12: Camera enclosure with mount

To extend the camera data cables a ribbon cable kit was purchased. The camera
lengths included two (2) at 30 inches and one (1) at 18 inches. To seal the assemblies, a slit
was cut in the endcap of the camera tube to allow the data cable through. This was then sealed
with epoxy on the exterior followed by a generous amount of silicone on the inside. With this
configuration the cameras should have a considerable working depth, approximately 100 feet.
Data control cables are taped down and organized together to prevent snagging and abrasion.

8. Camera Software

The camera system is composed of three Raspberry Pi single board computers with
accompanying Raspberry Pi camera modules. Each Pi is running the RPI Cam Web Interface,
which provides a web interface for the Raspberry Pi camera. The interface can be viewed in any
web browser, and has a live video feed with low latency and high frame rate. Camera settings
such as brightness and contrast can be controlled as well. Finally, the interface allows full-HD
video or full-res pictures to be recorded on the Pi while the live feed continues. The interface
loads automatically when the Pi starts

More information and source code for the RPi Cam Web Interface can be found at
http://www.raspberrypi.org/forums/viewtopic.php?t=63276 and
https://github.com/silvanmelchior/RPi Cam Web Interface

9. Electronics

The electronics used to power and control the ROV and their connections are shown in
the figure below. The main power from the tether is split to two main DC/DC converters to drop
the supplied 48V down to 20V for the thrusters. These thrusters are controlled by 2 Sabertooth
2x12 motor controllers. The 4th channel on the motor controllers is used to control the linear
actuator that moves the claw.

MATE ROV - Final Report - Page 19

http://www.raspberrypi.org/forums/viewtopic.php?t=63276
https://github.com/silvanmelchior/RPi_Cam_Web_Interface

We used many small adjustable DC/DC converters to step down the 20V to the 5V
needed by the Raspberry Pi's. One is also used to give 9V to the network switch, and one more
provides 12V for the solenoid air valves. The Beaglebone controls everything over various
interfaces. The motor controllers are connected over serial, the pressure sensor and IMU are
connected over I°C, and the air valves are connected via GPIO pins, with a custom made
MOSFET to provide the needed power.

During testing, one issue we had was electronic noise from the motor controllers
corrupting the sensor readings. To reduce this problem, we attached a ferrite bead around the

sensor wire. This drastically reduced the problems we had reading the sensor.

A network switch connects the Beaglebone and the Raspberry Pi’'s to the surface.

Submerged
Inside Electronics Tube &

200 H Thruster 1

— Sabertoth [T

ABN-=20V Mator Controdler 1 Thruster 2

Zahn DCSDC 2 Sabertooth

A8V 20N Mator Controller 2

Rasptﬂrw i
Rasptﬂrw i
Rasptﬂrw =

Zalenoid
Maisture 12V Step solencid Air Valve 1
’ b D
o rver Solenald
Conductivity IMU/Depth
Sensor SEersor

Alr Valve 2
Figure 13: Electronics Layout

10. Top Side Software & Control

The ROV is controlled via a joystick connected to a laptop on the surface. A GUI
displays input commands, sensor readings, and a high resolution real time video feed to
the operator. The interface is written in Python using the Pygame library. The Pygame
library allows access to the joystick as well as drawing to the screen. Python was
chosen because it allows rapid development of the code and has a multitude of libraries

MATE ROV - Final Report - Page 20

that make multi threading and networking straightforward.

The GUI is shown in the figure below. The right side shows the high resolution video
feed from the main camera to the operator. Additional video feeds showing the claw and
side view are displayed separately on a secondary monitor. The bar on the left displays
the status of the system and the commands being sent to the ROV. Pressure and
temperature readings, the status of the air valves, and the current status of the claw are
displayed in text format. Below that, an artificial horizon and compass display the
orientation of the ROV based on the IMU sensor readings. On the bottom, the current
speed of the thrusters is displayed.

=)

FES: 83.3
Screenshot (P): Ready

Figure 14: Pictured above is the GUI. It shows the video feed, status of the systems and the commands being sent to
the ROV

The application communicates to the ROV over an Ethernet cable which is part
of the tether. Ethernet cable has a maximum recommended run length of 200m, which
is well above the length of the tether. With a maximum data speed of 100 Mbps, a
single cable has enough data capacity to handle the control data and video feeds.

Data communication is done via the UDP protocol. This was chosen over TCP
because we do not need to resend any lost packets as it makes more sense to just
send a new packet with updated data. Control packets are sent approximately 100
times per second, making the ROV extremely responsive. The commands are encoded
in JSON format, a lightweight data-interchange format that is easy for humans to read
and easy for computers to parse. It results in more data being sent, but allows the
format of the commands to be changed or new ones to be added with ease. It is also

MATE ROV - Final Report - Page 21

language independent, so if the software on the ROV or surface was rewritten in a
different programming language, the commands could easy be parsed and integrated
into the new software.

The software has the functionality to save images from the video feed. This is
required for the photomosaic stitching task. Since the stitching is required to be done
during the timed mission run, an auxiliary laptop will likely be used to process the
images into a photomosaic. A free plugin for the free GIMP image editing tool exists that
will be used to create the photomosaic.

11. ROV Side Software

The Beaglebone Black (BBB) located on the ROV interfaces directly with all of
the electronics via general purpose input output (GPIO) pins, like a microcontroller. The
BBB receives control commands sent from the surface. It then uses those command to
send appropriate commands to the motor controllers and air valves.

For safety, the system has a watchdog timer. If no control input is received from
the surface computer for over a second, the ROV automatically enters a safe state with
all of the thrusters off. Normal operation resumes when the control signal is again
received.

Reading the IMU data and turning it into a useful representation is rather
complex, luckily an open source library is available at
https://github.com/mlaurijsse/linux-mpu9150/. Code for the pressure sensor was mostly
written in house, with some code used from an Arduino library for the sensor. To access
the sensors in Python, custom Python C extension modules were written to bridge the
gap between Python and C.

For tasks such as performing a simulated sonar scan and picking up objects, the
ROV will need to maintain its depth. To make this as easy as possible for the operator,
we would like to use a feedback system that allows us to set a depth and will keep the
ROV at that depth. Using feedback from a pressure sensor on the ROV, a PID control
algorithm will adjust the vertical thruster speed to hold the ROV at a given depth.

MATE ROV - Final Report - Page 22

https://github.com/mlaurijsse/linux-mpu9150/

Keyboard/
Mouse

loystick

Display

L\L

|

3

Dedicated Surface Computer (client)
- Receives user input from keyboard and joystick [
- Displays sensor readings and camera feads to user

F 3

LUDP Protocol over Ethermet

h 4

Movernent Commands
Actuator Commands

I: Sensor Feedback Video Feeds

F Y

B'eaglehone Black [on ROV) (server)
- Interfaces directly with hardware and sensors
- Performs automatic control operations
- Receives commands from surface & sends feedback

Raspberry Pi x3

iv_l

i

L T

Motar
Controllers

Air Valves

Pressure

Sensor/IMU R Pi Cameras

Figure 15: Shown above is the Hardware and Software Flowchart

MATE ROV - Final Report - Page 23

Testing
Test #1:

Our first test took place in the Davidson Tank. Our goal was to test the water proofing
concept of our ROV. The total depth of the Davidson Tank is 7 feet, which is a big difference
from the total depth of our competition. Our testing method was to put several components of
the ROV under the water for various increments to constantly check for any water leakage. The
first component we tested was our ROV frame. We added weight to the frame to make sure it
would sit at the bottom of the tank floor. To properly test it we added weight on the frame to
make sure it would sit on the tank floor for the duration of the test. We placed in it for 10
minutes, then 20 minutes and finally 30 minutes. The total length of the competition will be a
maximum of 20 minutes. The below figure is a picture of the frame under water. At the end of
our test, there was no water in the frame.

Figure 16: Picture of our ROV frame during
water proof testing on the floor of the
Davidson Laboratory Tank

We also then tested the water proof capability of our electronic enclosure, pictured
below. We placed pieces of paper inside the container to make sure they remained dry during
the test. We added weight to this to make sure it sat at on the tank floor. We tested it in various
increments of 10 minutes, 20 minutes and 30 minutes. At the end of our test, no water was
inside the container and the paper remained dry.

Figure 17: Picture of the electronics
enclosure being water proof tested

MATE ROV - Final Report - Page 24

Lastly we tested our thrusters to make sure they were functioning. In the end we had 3
working thrusters for our ROV and 1 spare working thruster.

Figure 18: Testing the thrusters to make
sure they work

Test #2:

Test #2 took place in Davidson Tanks. The objective was to test the functionality of our ROV.
We were focusing on buoyancy and center of gravity and how we could manipulate that by
adding, distributing or removing weights onto the ROV. To fully stabilize our ROV we needed to
add weight to the left back corner of the ROV. To assist the ROV when sinking or rising in the
water, the ballast tanks were filled or depleted. This test proved that the ROV was able to
function in all needed directions.

Figure 19: Our ROV functioning in
the water

MATE ROV - Final Report - Page 25

Test #3:

Test #3 took place in Davidson Labs, to test the full functioning capability of the ROV
with the claw and gripper mechanism. The ROV was able to perform and successfully picked up
a water bottle on the bottom of the tank. During the competition our ROV will be performing
tasks and the maximum weight our gripper will have to be able to hold is 100N of force which is
about 22 Ibs. This test also demonstrated the importance of camera placement. Our ROV has 3
cameras strategically placed on the ROV so that we can see any view we need to. This test
demonstrated that our depth perception through our camera were accurate when we were
successfully able to pick up the water bottle.

Figure 20: Set up before testing
Figure 21: ROV grabbing a water

bottle on the tank floor

Learning Experiences:

To be successful on any major project, especially design projects, team work is definitely the
most important aspect. Every member of the team plays a special role and it requires hard work
and dedication. Communication amongst group members should be done often to make sure
everyone is on the same page. To help remain on task throughout the duration of the project,
the Gantt Chart is very beneficial and is a valuable asset that is under used in industry. If given
this opportunity again, it would be in the student’s best interest to seek advice from multiple
people, not just from each other and the advisor. Our group started to reach out to various
departments and students but would recommend other groups do it before designing the ROV
so that their input can have a stronger effect on the outcome of the project. Testing is also very
important. Testing is where the group has hands on experience to correct and improve the
project. Our group had the opportunity to test different components individually and also as one
unit. We were successful and satisfied with our testing procedures but you can never have
enough testing. Testing, especially for an ROV gives students the opportunity to see what could
go wrong during a competition and how to be able to quickly adjust and fix the ROV so that in
the competition environment students will remain calm to fix the problem and finish the
competition.

MATE ROV - Final Report - Page 26

Appendix:

Final Budget for our Project:

Appendix 1: Our final Budget for our Project

Item Description | Item Number Quantity Price Total Place of Purchase
Beaglebone Black | Beaglebone Black | BB-BBELK-000-MD 1 45 45 hitp:fwww digikey com/product-
Competition Entry | Competition Entry 1 100 100 hittp: fhwww.marinetech.org!
Seabotix Thrusters | Seabotix Thrusters BTD150 3 695 2085

Linear Actuatar 2in 2001b Linear G102C 1 151 151 hitp:/fwww dcactuators . comiDet
1" PVC Pipe 531194 2201 3.19 5.38 hitp:itwww.homedepot.com/
4" PVC Pipe 4 feet In possession

1in 90 degree 1in 90 degree C406-010 2 0.66 5.28 homedepot

PYC Pipe Fittings | Standard Snap-T a027 2 1.49 298 homedepot

PVC Pipe Fittings | 45 Elbows Socket 417-010HC 8 0.87 776 homedepot

PYC Pipe Fittings 1" Standard- C436-010 2 0.66 1.32 homedepot

PYC Pipe Fittings 4" end cap 447-040 4 534 21.36 homedepot

PVC Pipe Fittings 1in - 3-way 4880KE33 4 288 11.52 hittp: fhwww.memaster.com/!

PYC Pipe Fittings 4.5in U- bolt 304857310 4 8.98 3592 hitp:/fwww.mcmaster.com/
Rubber Loop Rubber Loop 3225761 1 337 337 hitp:/fwww . mcmaster. com/

Mylon Liguid -Tight |Mylon Liquid -Tight F9915KA2 2 324 5.48 hitp: ffwww.mcmaster.com/

Mylon Liguid - Mylon Liquid - £9915KE1 4 324 12.96 hittp: fhwww.memaster.com/!

Stainless Steel Stainless Steel BETOKA41 2 331 6.62 hitp:/fwww.mcmaster.com/

Mickel-PLated Mickel-PLated 2844K13 2 717 14 34 hitp:fwww.memaster.com/
Air Soleniod Solenoid Valve 207 2 25 50 http:ihwww. rc-sub-

Step Down DC/DC |Step Down DC/DC | DCDC48/24/280 1 19579 195,79 hitp:/fwww.zahninc.com/
5- port desktop BOOOFMFSPY 1 9.499 9.99 WWW.amazon.com
Waterproof Waterproof XOOOHBVLJH 1 39.95 39.95 WWW.AMAZ0N. com

Flash Memaory 2 GB Flash BODZ200KATS 3 4.95 14.85 WWW.AMAaZon.com

15 Amp AGL 10 pack of 15 Amp| BOO4WKAZSW 1 812 812 WWW._amazaon.com
Joint Unit Joint Unit SUPPP32A 1 8.13 8.13 WWW.AMazon.com

Tapered Screw Tapered Screw MSWTS3 5 3.41 17.05 WWW.AMAZ0N. COMm
Qne-Touch QOne-Touch UJSYLE 1 2.88 2.88 WWW.amazon.com
IS0 Stickers 150 Stickers LRS-02 1 6.91 6.91 WWW.amazon.com
One-Touch One-Touch MSCHNFE-1 1 1.81 1.81 Misumi
Qne-Touch QOne-Touch MECNC10-1 1 213 213 Misumi

Joint Joint BSLG10 2 1.49 208 Misumi

Resinrods Resinrods ROJC25-200 1 19.64 19.64 Misumi
Resin Pipes Resin Pipes PlJAS0-G00 1 96.73 96.73 Misumi
Manifold Manifold DUNLWE-10 1 7.22 7.22 Misumi

Joint Joint BSLGE 4 0.82 0.82 Misumi

Mylon Tubings MNylon Tubings PUTNSE-20-W 1 30.23 30.23 Misumi

0 Ring D Ring NPEGT [218 17.44 Misumi

Raspberry Pi Raspberry Pi XODDJYSETR 2 58.99 137.98 Misumi
GeauxRobot GeauxRobot BOOBXWXVCI 3 3.89 26.97 WWW.AMAZ0N. COMm
Rasberry Pi Raspberry Pi KODODWKO4R 1 40.59 40.59 WWW.Amazon.com
Control Cable Fast High 200-04222-0036 1 104 104 WWW.amazon.com
Camera Wide Angle Macro | XD00JPMM3MN 1 5.45 5.45 WWW.AMAZ0N. com

Polypropylene Polypropylene BODABSWMI2 2 275 5.5 WWW.AMAaZon.com

Tube Fittings 1-1/4" BOOBHOQGLBO 1 1.31 1.31 WWW._amazaon.com
Mylon 1-1/4" Male x
Tube Fitting Barbed BOOBTSTAQO 1 2 64 2 64 WWW._amazaon.com
Total: 3374.5
Misumi Discount -317.08 Student Discount
Seabotix Thrusters -2085 Already in Possession
Our Total: 972.42

The figure above shows the total budget for our project. Buying every part new and at
full value our project would have been about $3,374.50. Thankfully we were able to get a
student credit discount from Misumi and we already had our Seabotix Thruster from previous

MATE ROV - Final Report - Page 27

years. With this help our budget only equaled $972.42. This project is unique because we are
able to build a whole functioning underwater ROV for a fairly cheap cost considering other
projects and their functions and costs.

@ Ty Teklame o Duration _ [Start [Finizh [Predecessors | Metou popil 13 [Sepd 33 [56p 2213 [Oct13,'i0 [Newd,'l3 |Now24,'13 [Dec 1%, 'i3 [in%, 14 [MandG 14 [1ebi6, 14 |Mar9 14 N30, 14 [Apr 20,14 |May1L'14 [Jund, 34 |lund2. 14
Mo MY WY FEIETETRIY YT F s s IMI T (Wl ¥ T F ST M T [wlrFIS[s(mIT W[t [ETElETm] T IW[T[ETE]
2 |(EH = Aesearch and Analysis 42 days Thu9f26/13 Fri1nfanf13 L —
B * Design & Analysis 18 days Mon 10/28/13 Wed 11/20/13 | R
4 v ordering 15 days Mon 11/16/13 Fri 12/6/13 [
5 v + Comrstruction 53 lays Wed 12/813 Fri2f1af1s & '
& | - Tacting & Analysic a5 days wed13faf13 Frizf7f14 =3
Tl -+ Phase 1 Repart Adays Thu®/26/13 Tue 10/1/13]
B + Phase 1 Presentation 1day Wed 9/25/13 Wed 9/25/13 I
Practice
9 r Phase 1 Presentation 1day Thu%/26/13 Thu 9/26/13 I
10 |« o #hage 2 Presanation 11 days Mon 10/31/13 Man 11/a/13 [|
Create
150w g Phase 2 Presentation ddays Mon 11/4/13 Wed 11/6/13 =
Practice
v Phase 2 Presenation Final 1 day Thull/7/13 Thu11/7/13 | I
LIS r Phase 3 Eeport 33 days Mon 10/21/13 wed 12/3/13 2 ——
Construction
4 " weeakly Monday Meatingt 46 days Mon9/30/13 mon12/2/13 _ %
with Advisor
15
16 F Weekly Tuesday Mestings 86 days Tue 1/14/18 Tue5/13/14 [3
with Advizor
17 ™ Ordier Parts 9 darys Mon 12/23/13 Thu 2/27ha
15 o Construction of Frame & daye Fri 2f3514 Fri3/7/14 17 &=
tL] - Construction of ROV 19 days Tue 2/4/14 Fri /28714 —_——
o " Testing Procedure Dutline 11 days Meon 3314 Mon3/17/14 19
21 + Testing ROV 22 days Tue 3/18/18 wedaf16/18 20 e
22 -+ Phate IV Report 20 days Tue 1/14/14 Mon 2/10/14 L1
1 -+ Phase IV Presentation 22 days Tue 1/14/14 Wed 2/12/14 —_———
24 o Phase V Presentation 22 days Mon 2/17/18 Tue 3/18/14 [S—
5 o Senior Cesign Day 1 diny wed 3/19/14 wed 3/19/12 22 - 4
% - Final Report 31 days Mon 3/24/14 Mon 5/5/14 | S
ar -+ Final Presentation Due 39 days Mon 3/17/14 Thu 578/14 e 3
8 # Present Final Presentation 1 day Fri 5/9/14 Fris/af1s 27 i
9 T Hegional Demo 1 day sat5f10/14 Sar5/10/18 t
3a - Competition Adays ‘Wed 5/14/14 Mon5/19/14 16,1179 h

Appendix 2: Final Gantt Chart of our Project over the course of 2 semesters, condensed for easy visibility

Gantt Chart:

Pictured above is our team’s Gantt Chart. Throughout the course of the semester tasks were
modified to keep with the needs of our project. This work break down scheduled help to keep
our group focused and organized on completing each phase of our project and keep a good
pace to make sure we allowed for adequate testing of our project in water to make sure it was
ready for competition.

MATE ROV - Final Report - Page 28

Drawings of Components of the ROV:

RO.043 TYP
SHD 0043 1

@ 1.500 - 2250 -
/ @0.500

0.750
@ 0257 THRU ALL
| 5f16-18 UNC THRU ALL | a75
e === CHRIS STOLLEN
ooy e nne:

= s COUPLER
= - - - A ACTUATOR ™

e B B Dl SCALE 11 WilGHT: THEET1 OF 1
L] El 3 I 1
0.750
&
(=1 2% 0 0201 THRU ALL
= | 1/4:20 UNC THRU Al

=1 CHRIS STOLLEN

.y * ot e
R [RIGHT CLAMP
P e s — it owe, pev
R A ACTUATOR
e ke e rese SSME D WeOHT | SR 1cHt
750
T =
g 0125 _
RO750 S]
/\,_ e =
® A

S S CHRIS STOLLEN

OFFSET

A ACTUATOR

5 “ 3 2 '

| 15.000
1
.
x @ 0157 THRU

43 @ 0531 THRU ALL 1032 UNF THRU R0.250

¢ O - D o + @] ﬂ%

. e
SR L0 BALLAST MOUNT
e EE e s

EEV
L e e A BALLAST A
= . e Bzt stait e ICALE 111 WEGHI: SPHEETY OF 1

0™ CHRIS STOLLEN

e e

e LEFT CLAMP

A ACTUATOR ™

SCALE 1:] WBGHT HEET 1 OF |
2
= 2.200 _
D0.£25 0200 _| 035 i1
[’ i] !
. o
0,050 % 4577 g
Sl o -
FERR DO CHRIS STOLLEN
fervastes e e

e

T COUPLER PIN

B i aa
[,

i oo SE OWG, MO L
| e A ACTUATOR
s POt i S CALE 111 WEIGHT: SHEST 1 OF 1

MATE ROV - Final Report - Page 29

= CHRIS STOLLEN
me

CLAW LINKAGE

HE DG, N,
e T A GRIPPER

e, i b SCALE T WEGHT: st | CF |

= = CHRIS STOLLEN
CABLE SHIM

| A “GRIPPER

7 THRU ALL
THRL ALL

1,400

e Chnis Stollen
Camera Housing
WE DWNG. MO
—R A FLANGE
prirrze SCALE: 11 WOGHT. SEET 1 B 1

1
i
L \
A7 ~
= 0 o
2 & 213 THRU AL & 375
f4-28 UNF THRU J

ALL |

e+ CHRIS STOLLEN
e

PULL ADAPTER

A “GRIPPER

SCALE &1 WGHT ST OF |
b '

1. BREAK ALL EDGES BY D010 MIN
T 1.000

DETAIL A
SCALE4:3

X $0.188 T THROUGH

“7 " CHRIS STOLLEN
e
LG ELECTRONICS
TUBE END PLUG

L DWOL N,
—_— 1 = = A END PLUG

v s SCALE 12 WEIGHT: SEETICF)
s H) 2 '

b CHRIS STOLLEN
me

REAR SUPPCRT

A “GRIPPER
SCAE: 3] WBGHT: 0T OF)

MATE ROV - Final Report - Page 30

RO,25 TYF ix 178 THRU

Y 1.783
. 2% @ 0.201 THRU ALL b=
o p? 1/4-20 UNC THRU ALL | og%
¥ " [
1 2 &
&L
o } R1.125
= o I
! .
o i
& = |
i)
]
}' S QY xé
_lrooo) i e e o | i

e | 1 CHRIS STOLLEN
e o THRUSTER MOUNT

THRUSTER CLAMP

Er o I A THRUSTER
v A THRUSTER e prper— soAle il weonn swEior
prrr—— T SCALE 12 WG By N ‘ : . !

EGATIVE 52V AAWS WIRE
16N 40 P51 @ 1ATM AR LINE
3/ 140N VACLUM AIR LINE
PRIMARY CATSE COMM. LINE

|6 SECONDARY CATSE COMM. LINE
* OPTIONAL COMPONENT
o 1.500
& | ¢
T 11
o L1 |
i Ro.6as
—
o o
1 =7 |
i i1 1
a (TR ';‘ 2
g of o mmommesl === OHRIS STOLLEN
= L AL SERT O CROSS SECTION
= - i T B DWG, SC L
: CLAMP ADAPTER — A “TEmHER 3
S WG, MO v - B s Forericns SCALE 47 W SHEET 1 0F 1
= | == A CAMERA . . ¥ 3 '
T B s SCALE: 1) WEGHT: SHEET L OH 1
P . 3 3 !
4 X 0,129 THRU
llll-:’.." I
' % i
{ UP 907 R 003 '
S o + J e
o (IS) RO T8 TYF i
L CHRIS STOLLEN ¢ i3 b o t - A |
TP-LINK MOUNT Rt mesemmnns @ . CHRIS STOLLEN

firt:

MAIN SUPPORT

' et GwaL o,
o = e A ETRAY

proeevay [— BCALE 13| WBGHT, S 1

‘ ' i " ' I A “GRIPPER
amnan 0 ALl B SCALE 112 WEIGHI: ShEET IO |

s - 3 z 1

MATE ROV - Final Report - Page 31

®
“ = CHRIS STOLLEN
" TOP SPACER
- = RGee "
Thruster Test:
Thruster Status
Mo. Src image Seerial o, Statur: Notes =

BTO-150-0412-00

-
ASY
WORKING

Lubricated on 41014

BTO-130-0412-00C

A’;U
WORKING

Fropeller iz lacking the proper lubric ation, shaft iz fouled near external
bushing, Lubricated on 410814

BTO-130-0310-0C

w
Bluadart

WORKING

Lubrizated an 410114

BTO-150-120800¢

3
Bluedart

WORKING

Kort nozzle removed, modified nozzle mount. Lubricated an 410114

)| ETO-150-01-03-

()]
Bluedart

Kart nozzle removed; modified nozzle mount; 3" long pigtail

BTO-130-0310-0

[=1]
Bluadart

Kort nozzle removed; modified nozzle mount; missing retention strap; missing
propeller pin; possible case flooding

MATE ROV - Final Report - Page 32

Code:
The entire project code can be seen over the next few pages

Appendix — Code Listings

Listing 1: surface.py

import sys
import socket

s import json

4+ import datetime
import time
import os

7 import urllib2

+ dimport cStrimgId

s import threading

w import thread

11+ import pygame

12 import math

i» from pygame.rect import Rect

s import receivedata
s import widgets

iw UDP_IP = "192.168.1.10"
w UDP_PORT = 1870

23 #window imitilization

2 sidebarwidth = 220

: pygame.init()

w pygame.display.set_caption(’ROV Control’)

»» size = width, height = 9%60+sidebarwidth, 720

w ##5et up widgets

2. screen = pygame.display.set_mode(size)

22 onstatus = widgets.toggleable("Running (1)", sidebarwidth)

sz turningdisplay = widgets.toggleable("Quick Turn (2)", sidebarwidth)
. fpsdisplay = widgets.display("FPS8", sidebarwidth)

a2 tempdisplay = widgets.display("Temp”, sidebarwidth)

22 prasdisplay = widgets.display("Pressure”, sidebarwidth)

a7 screenshot = widgets.display("Screenshet (F}", sidebarwidth)

2 clawdisplay = widgets.display("Claw", sidebarwidth)

w clawdisplay.value = “Idle”

4 airoutdisplay = widgets.toggleable("Air Out®, sidebarwidth)

42 airindisplay = widgets.toggleable("Air In ", sidebarwidth)

4s depthholddisplay = widgets.toggleable("Depth Held ", sidebarwidth)

4s ahdisplay = widgets.ahorizon(sidebarwidth)
4 compassdisplay = widgets.compass(sidebarwidth+2/3)

4s =zslider = widgets.sliderdisplay("zslider", 75, 160)
4 mlaeftslider = widgets.sliderdisplay("Leftslider®, 75, 160)
so mrightslider = widgets.sliderdisplay{("Rightslider", 756, 160)

image = widgets.ipimage{"http://192.168.1.11/cam_pic.php")
#init joystick

joystick = None
57 if pygame. joystick.get_count () == 0:

MATE ROV - Final Report - Page 33

print
else:
joystick

"No Joysticks Detected"

pygame . joystick. Joystick (0)

joystick.init ()

#5tart ROV data getter

rec
rec.start ()

##Main Loop
currenttime
running Tr

while running:
prevtime = currenttime
correnttime = pygame.time.get_ticks ()
Get input from joystick and keyboarrd,
pyEame . event . pump ()
key = pygame.key.get_pressed()

for evemnt in
if event

if event.type

if event.type

ua

ru

receivedata.receivedata(’Surface’, *°

pygame.time.get_ticks() - 1

- typﬂ

nning

False

pygame.avent.get ():
== pygame .QUIT:

== pygame .KEYDOWN :

if event.key == pygame.K_p:
image .screenshot ()

if

if

if

if

if

if

event.button

onstatus.toggle ()

event.button

== 1:

turningdisplay.enable ()

event.button

clawdisplay.
clawdisplay.

event.button

clawdisplay.
clawdisplay.

event.button

2:

UDP_PORT)

== pygame.JOYEUTTONDOWN :

setValue ("Clozing")

bgcolor

(200,

setValue("Opening")

bgcolor

airindisplay.toggle()

event.button

airoutdisplay.toggle ()

5:

(o, 200,

if event.type == pygame.JOYBUTTONUP:

fpsdisplay.setValue(*{:3.1f}’ . format ((1000.0 / (currenttime

if image.can_screenshot:

if event.button == 1:

turningdisplay.d

if

if

event.button

clawdisplay.
clawdisplay.

event.button

clawdisplay.
clawdisplay.

2:

izable ()

setValue ("Idle")

bgcolor

(255,

setValue (" Idle")

bgecolor =

screenshot.setValue (*Ready")

else:

zcreenshot.setValue ("Taken")

#Create commands to send to ROV

commands

1}

(2885,

update widgets

200, 0)
o)
255, 255)
256, 258)

- prevtime))))

MATE ROV - Final Report - Page 34

if joystick is not HNone:

¥ = joystick.get_axis (1)
x = joystick.get_axis(0)
twist = joystick.get_axis(3)

#only run motors of system is on - don't burn out those thrusters!

if onstatus.state:
if turningdisplay.state:
#turning mode
commands [*tleft’] = twist
commands [*tright*] = -twist
alse:
#normal mode

ratio = abs(x)
power = -y
if math.copysign{1l, =} > O:
commands [*tleft’'] = power
cummanda[‘tright’] = power * (1
else:
cummanda[‘tright’] = power
commands ["tleft’] = power = (1
commands [tup’] = -joystick.get_axis(2)
if clawdisplay.wvalue == "(Opening":
commands [*claw’] = 0.65
glif clawdisplay.value == "Closing":
commands ['claw’] = -0.65
elif clawdisplay.value == "Idle":
commands[*claw’'] = 0
commands [Yairout®] = airoutdisplay.state
commands ["airin"] = airindisplay.state
else:
commands ["tleft’] = 0O
commands [*tright'] = 0
commands [*tup’] = 0
commands [*claw®] = 0
commands [’aireut’] = False
commands ['airin’] = False
mleftslider.value = commands[’tleft®]
mrightslider.value = cummands[’trjght']
zslider.value = commands[’'tup’]

#Comnunications
received = rec.get ()
if received:

tI:lf'

- ratiao)

- ratie)

tempdisplay.setValue(’{:2.1f} C’.format{(received.get{"temp’}))

presdisplay.setValue{’'{:4.2f} mBar’.format(received.get(’pres’)})})

except ValueError:

PaHE
x = raceived.get(’x’)
¥ = raceived.get(’y’)
z = raceived.get(’z’)

if x is not None:
ahdisplay.rell = x

if y is not None:

MATE ROV - Final Report - Page 35

ahdisplay.pitch = -y
if z is not Nome:
compassdisplay.yaw = z
MESSAGE = json.dumps(commands)
#print MESSAGE

sock = socket.socket(socket.AF_INET, # Internet
socket . SOCK_DGRAM) # UDF
sock.sendto (MESSAGE, (UDP_IP, UDP_PORT))

##Drawing Stuff

dheight = onstatus.get_height()
screen.blit{onstatus.render (), (0, 0))

screen.blit (turningdisplay.render(}, (0, dheight))
screen.blit (fpsdisplay.render(), (0, dheight=+2))
screen.blit (screenshot.render (), (0, dheight=+3))
screen.blit (tempdisplay.render(), (0, dheight=4))
screen.blit (presdisplay.render(), (0, dheight=5))
screen.blit (clawdisplay.render(), (0, dheight=6))
screen.blit (airindisplay.render(), (0, dheight=7))
screen.blit (airoutdisplay.render(), (0, dheight=8))
screen.blit (depthholddisplay.render(), (0, dheight+*3})
screen.blit (ahdisplay.render(), (0, dheight=10))

screen.fi11 ((285, 2565, 255), pygame.Rect (0, dheight=*10+sidebarwidth,

sidebarwidth,

screen.blit (compassdisplay.render(), (220/6, dheight*10+sidebarwidth))

screen.blit(zslider.render (), (0, dheight+=10+sidebarwidth*(1+2./3)))
screen.blit (mleftslider.render (), (73, dheight+*10+sidebarwidth*{1+2./3)))
screen.blit (mrightslider.render(), (146, dheight*10+sidebarwidth=(1+2./3)))

screen.blit (image.render(), (sidebarwidth, 0))

pygame .display.£flip()
time.sleep(0.01)

pygame.quit ()

sidebarwidt

Listing 2: widgets.py

FProvides methods for drawing various widgets on the screen

import pygame
import threading
import thread
import tima
import cStringI0
import urllib2
import datetime
import math

class toggleable:
def __init__(self, name, width):
zalf .name = name
zelf.width = width
salf .myfont = pygame.font.SysFont("monospace”, 16)
salf.state = False

def render(self):
if self.state:
text = self.myfont.render(self.name + ": On*, True, (0,
else:
text = self.myfont.render(self.name + ": 0ff", True, (0,
background = pygame.Surface((self.width, text.get_height()})})

BI

o,

o))

o))

MATE ROV - Final Report - Page 36

background.fill(({not self.state) * 1560, self.state * 150, 0))
background.blit(text, (0, 0))
return background

def get_height(self):
return self.myfont.get_height ()

def toggle(selfi):
self.state = not self.state

def enable(self):
self.state = True

def disable{self)}:
self.state = False

class display:
def __init__{(self, pname, width):
self .name = name
self.width = width
self .myfont = pygame.font.SysFont("monospace”, 16)
self.value = 0

zelf.bgcolor = (255, 265, 25B)

def render (self):
text = self.myfont.render(self.name + ": " + str(self.valuel), True, (0, 0, 0J)
background = pygame.Surface((self.width, text.get_height ()))
background.fill{self.bgcolor)
background.blit(text, (0, 0))
return background

def get_height(self):
return self.myfont.get_height ()

def setValue(self, walue):
zelf.value = walue

class sliderdisplay:
def __imit__(self, name, width, height):
zelf .name = name
self.width = width
self .height = height
zelf.value = 0
self .myfont = None

def render(self):
bar = pygame.Surface ((self. width, self.height))
bar.£i11((230, 230, 230))

#draw bar
if self.value < 0:

bar.£i11((70, 70, 240), (0, self.height * 0.5, self.width, -szelf.value #* self.height =

alse:
bar.£i11((70, 70, 240),

(0, (1 - self.value) = =zelf.height * 0.5, self.width, self.value * self.heigh

#fdraw tick marks
for i in range(1, 10):
pygame.draw.line(bar, (0, 0, 0), (0, self.height * i * 0.1), (self.width * .35,

MATE ROV - Final Report - Page 37

self . h

pygame .draw.line(bar, (0, 0, 0), (0, self height = 0.5), (self.width * 0.5, =elf.height =*
pygame .draw.rect (bar, (60, 650, 50), pygame.Rect(0, 0, self.width, self.height), 2)

return bar

class compass:

def

__init__(self, size):

self .width = size

self .height = size

self.yaw = 0

self.compass = pygame.transform.smoothscale(pygame.image.load("heading.png”), (size, size)
self .arrow = pygame.transform.smoothscale(pygame. image.load("arrow.png”), (size, sizel)

render (self):

"""rotate an image while keeping its center and size""™"
orig_rect = self.compass.get_rect()

rot_image = pygame.transform.rotate(self.compass, self.yaw)
rot_rect = orig_rect.copy()

rot_rect.center = rot_image.get_rect().center

out = rot_image.subsurface(rot_rect).copy()
out.blit(self.arrow, (0, 0))

return out

class ahorizon:

def __init__{(self, width):

self .width = width

self . height = width

self .roll = 0

self.pitch = 0

self .myfont = pygame.font.SysFont("monospace™, 14)
@property
def render(self):

ah = pygame.Surface((self.width, self.height))
ah.£111((30, 144, 2558))
if -90 <= self.pitch <= 390:
pygame.draw.rect(ah, (285, 140, 0},
pygame .Rect (0, (self.pitch + 90) * self . height / 180.0, self.width, =
elif -180 <= self.pitch < -30:
pygame.draw.rect(ah, (285, 140, 0},
pygame . Rect (0, 0, self.width, (%0 + (self.pitch + 1B0)) =* =elf. height
elif 90 < self.pitch <= 1B0:
pygame.draw.rect(ah, (285, 140, 0), pygame.Rect(0, 0, self.width, (self.pitch - 90) =
elsa:

ah.£ill((2656, 0, 0))

pygame.draw.polygon(ah, (0, 0, 0), [
(self.width=*0.475, =elf.height=0.05),
(self.width/2, self.height=*0.01),
(self.width=0.525, =self.height=*0.05)])

#rotate an image while keeping its center and size
orig_rect = ah.get_rect()

rot_image = pygame.transform.rotate(ah, self.roll)
rot_rect = orig_rect.copy()

rot_rect.center = rot_image.get_rect().center

ah = rot_image.subsurface(rot_rect).copy()

MATE ROV - Final Report - Page 38

pygame .draw.line(ah, (0, 0, 0), (=elf.width = 7 / 20, self . height / 2), (self.width = 9 /

2)

pygame .draw.line(ah, (0, 0, 0), (self.width =+ 11 / 20, self.height / 2),
(self.width * 13 / 20, self.height / 2}, 2)

for i in xrange(4, 16):

pygame .draw.line(ah, (2658, 285, 28B8), (self.width * 9 / 20, self . height * i / 18.0),
(self.width * 11 / 20, self.height * i / 18.0), 1)

for i in xramge(21, 34):

pygame .draw.line(ah, (2585, 255, 255),
(self.width/2+40.475+5elf.width*math.cos(math.pi*i/18),
self . height /2+0.475+*self.width#*math.sin(math.pi+i/18)),
(self.width/2+self .width*math.cos (math.pi*i/18),
self.height/2+self.width*math.sin(math.pi*i/18)), 2)

cover = pygame.Surface((self.width, self.height))

cover .£i11 ({2556, 285, 255))

pygame .draw.circle (cover, (0, 0, 0},
cover .sat_colorkey ({0, 0, 0))
ah.blit{cover, (0, 0))

text = self . myfont.render(’F:{:4.1f}

ah.blit(text, (0, self.height - text.

text = self.myfont.render(’H:{:4.1f}

ah.blit{text, (self.width - text.get_

return ah

class ipimage:

def

downloader (self):
while True:

starttime = time.time ()
cutput = cStringI0.StringI0()
try:

(self.width / 2, self.height / 2), self.width / 2}

deg'.format (self.pitch), True, (0, 0, 0))
get_height (1))

deg’'.format (self.roll), True, (0, 0, 0))
width(), self.height - text.get_height()))

output.write(urllib2.urlopen{self.url, timecut=1).read())

output . seek (0)

img = pygame.image.load(output)

with self.thread_lock:
self.image = img
except urllib2.URLError, e:

myfont = pygame.font.SysFont("monospace”, 16)

with self.thread_lock:

zelf.image = myfont.render(str(e), True, (285, 0, 0))

endtime = time.time()

timetosleep = 1.0 / self.max_rate

if timetosleep > 0:
time.sleep(timetosleep)

render (self):
return self.image

screanshot (5elf):
if self.can_screenshot:
salf.can_scresnshot = False

- (endtime - starttime)

filename = datetime.datetime.now().strftime("Ny-Um-Yd-LH-YM-YE-%f") + " . png"

pygame.image.save (self.image, filename)

def reenable():
self.can_screenshot = True

t = threading.Timer (1.0, reenable)

-1

MATE ROV - Final Report - Page 39

def

Listing 3: receivedata.py

import
import
import
import
import
import

t.start ()

_init__({self, url):

zelf.url = url

self.image = pygame.Surface((1, 1))
=elf.can_screenshet = Trus

zelf .max_rate = 30 # per second
self.thread_lock = threading.Lock()
thread.start_new_thread(self.downloader, ())

threading
arrno
socket
datetime
time

json

class receivedata(threading.Thread):

def

def

def

def

__init__(self, name, IF, port):
threading.Thread. __init__(self)
self.datalock = threading.Leck()

zelf.data = ""
zelf .name = name
zelf.timerec = 0

zelf.sock = socket.socket(soccket . AF_INET, # Internet
socket . SOCK_DGRAM) # UDP

self.sock.bind ({IF, port))

salf.sock.setblocking(False)

zelf.newbData = False

self.shouldStep = threading.Event ()

self.daemon = True

run(self):
print "Starting " + self.name
while True:

try:
with self.datalock:

zself .data, addr = =zelf.sock.recvfrom(1024)
except socket.error, a:

Brr = B.args[ﬁ]
if err == arrno.EAGAIN or err == errno.EWOULDBLOCK:
time.sleep(0.01)
else:
print e
sys.exit (1)
else:
self.timerec = datetime.datetime.now()
zelf .newbData = True
get(self)d:

if salf.newData:
salf.newbData = False
with self.datalock:
return json.loads(self.data)
else:
raeturn None

__del__(=self):

MATE ROV - Final Report - Page 40

buffer size iz 1024 bytes

self.sock.close()

Listing 4: rov.py

recaivedata
time
dataetime
json

socket
threading

import
import
import
import
import
import

sabartooth
Adafruit_BEIO.GPIO as GPIO

import
import

MS5803
mpuf150

import
import

pravtime = datetime.datetime.now()

timeout = False

class watchdeog(threading.Thread):
def __init__{(self, threadID, name):
threading.Thread. __init__(self)
zelf.threadlD = threadID
zelf .name =
zelf .dasmon =

name
True
def run(self):
print "Starting " + self.name
while True:
timedif =
global timeout
if timedif > 0.5:
timeout = True
else:
timeout = False

time.sleep(0.5)

UDP_IP = "192.168.1.9"

#UDP_IP = “182.168.7.1"

UDP_PORT = 1870

r = receaivadata.receivedata{("ROV", *7,
r.start ()

watchdogthread = watchdog(1,
watchdogthread.start ()

sock = socket.socket(zocket.AF_INET,
socket . SOCK_DGRAM)

51 = sabertooth.Saberteooth(4, 128)

52 = sabertocoth.Sabertooth(4, 129)

#limit claw wvoltage, max rating is

s1l.limitOutput (2, 0.65)

psense = M36803.M35803 ()
mpud150 . mpu9150 ()

imu.init ()

imu =

{(datetime.datetime.now()

"Watchdog"}

12V,

- prevtime).total_seconds ()

UDP_FORT)

Intermnset

UDP

not 20

MATE ROV - Final Report - Page 41

imu.start ()

#Air out
GPIO.setup('FP9_14°, GPID.OUT)
#Air in
GPIO.=setup('F9_16°, GPID.OUT)
while True:
mydata = r.get()
if timeout:
sl.move(l, Q)
sl .move (2, 0)
s2.move(l, 0)
s2.move (2, 0)
if mydata:
prevtime = datetime.datetime.mnow()
zenddata = {}
temp, pres = psense.read()
if not (pres < 0 or temp < 0):
sanddata[’tamp'] = temp
sanddatal’pres’'] = pres
senddatal[’xz’] = imu.y
senddatal’y’] = imu.x
senddatal[’z’] = imn.z

#sla - top motor

#s52a - right motor
#s1b - left motor

sl . move(’a’, —mydata[‘tup‘])
sl.move({’b’, nydata['cla?‘])
s2.move{’a’, nydata['tright‘])
s2.move(’b’, -mydatal’tleft’])
if mydatal’airout’]:

GPID.output{'P9_14°
else:

GPID.output{’'F9_14"
if m]ﬂata[‘airin']:

GPIO.output {*FP9_16"
else:

GPIO.output {*F9_16"
MESSAGE =
#print MESSAGE
sock.sendto (MESSAGE ,

time.sleep(0.01)

Listing 5: sabertooth.py

##S%abertooth motor controllers

(UDP_IP,

, GPIOD.HIGH)

, GPID.LOW)
, GPID.HIGH)

, GPIO.LOW)

json.dumps (=zenddata)

UDP_FORT))

in Packetized Serial Mode for BEBB

import Adafruit_BEIO.UART as UART

import serial
class Sabertooth:

#command bytes
forwardmotorl = 0x00
backwardmeotorl = 0x01
forwardmotor2 = 0x04
backwardmotor2 = 0x05
motorlfbit = 0x06
motor2¥bit = 0x07

serialtimeocut = Ox0e

10

MATE ROV - Final Report - Page 42

def __init__(=elf, UARTnumber , address,
if mot (128 <= address <= 138):
raise ValuweError("Address must be from 128 to 135")

debug = False):

UART . setup ("UART{:d}".format (UARTnumbar})

self.address = address

self .ser = serial.BSerial(pert = "/dev/tty0{:d}".format (VARToumber), baudrate=3600)
self.ser.close()

self . ser.open()

self .debug = debug

self . motorilimit = 1.0

self . motor2limit = 1.0

def limitDutput{self, motor,
if motor im [1,7a’,’47]:
self . .motorilimit = limit
elif motor in [2,°b?,°B’]:
limit

limit):

self . motor2limit =
else:
raise ValueError("Invalid Motor™)

def command{self, command, data):
checksun = (self.address+command+datal & 127
packet = *’.join([chr(i) for i in [self.address, command, data,
if self.debug:
print [ord(i) for i in packat]

checksum]])

self . ser.write(packet)

def setSerialTimecut(self, milliseconds)
self.command (Sabertooth.serialtimeocut, int(millizeaconds/100})
def move(self, motor, speed):
if speed » 1 or speed < -1:
raise ValueError(“"Invalid Speed™)
if motor in [1,’a’,’A’]:
if spead »= 0:
zalf.command (Sabertooth.
else:
zalf.command (Sabertooth.

forwardmotorl ,int (min{speed,self . motorllimit)=*127))
backwardmoterl,int (min(-speed,self .motorilimit)}=*127))

elif motor in [2,°b?,°B’]:
if speed »= 0:

zelf . comnand (Sabertoeoth
else:
self.command (Sabertooth.

else:
raise ValueError("Invalid

.forwardmotor2 ,int (min(speed,self . motor2limit)=*127))

backwardmotor2, int (min(-speed, self . motor2limit)=127))

Motor ™)

Listing 6: mpu9150.py

##wrapper for the ¢ module

#imu seems to require being constantly read at a steady rate, hence this class

import imu
import threading
import time

class mpuB150(threading.Thread):

11

MATE ROV - Final Report - Page 43

def __init__(self):

threading. Thread. __init__(self)

self.x = 0.0
self.y = 0.0
self.z = 0.0

self.daemon = True

def init(self):
self.imu = imu.imu()
def run(self):

print "Starting IMU data getter"
while True:
data =

if data:
salf.x, self.y,
time.sleep(0.02)

self.z =

Listing 7: ms5803.c (C program for reading pressure sensor)

<stdlib.h>
<stdio.h>
<sys/stat.h>
<sys/fioctl.h>
<sys/time.h>
<fecntl.h>
<unistd.h>
<math.h>
<linux/fiZc-dev.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include

int file;

int adapter_nr = 1;
char filename [20];
char buf [10];

int 1i;

unsigned long D1

unsigned long Dz

float deltaTemp
float sensorlffset
float sensitivity

float temp = 0;
float press = 0;

unsigned int sensorCoefficients[8];

#define
#define

FRESSURE 0bO
TEMPERATURE 0b10000

DSR256 0bO
0SR512 0b10
0SR1024 0b100
DSR2048 0b110
0SR4096 0bL1000

#define
#daefine
#define
#define
#define
int raw_convert{char type, char 05Rlevel)
i

int result;

char command = 0x40+type+08Rlevel;

if (write(file, &kcommand, 1) !'= 1){

data

12

self.imu.get_eunler_angles ()

Sensor is set for 50 H=z

/f Stores uncompensated pressure value
// S8tores uncompensated temperature wvalue
f/ These three wvariable are used for the conver

MATE ROV - Final Report - Page 44

}

void readSensor(){

}

int readPROM(int pos)

i

printf ("Error sending init conversion to deviceln");
}
switch (O5Rlevel)
i

case 0SR256
usleep(1000);
break;

case 08R512
usleep(3000);
break;

case 08R1024:
usleep(4000);
break;

case 0SR2048:
usleep(6000);
break;

case 0S8R4096:
usleap(10000);
break;

}

usleep (3000);

command = 0x00;
if {(write(file, kcommand, 1) I= 1)}{

printf ("Error sending read sequence to devicel\n");
}
usleep (1000);
if(read(file, buf, 3) != 3) {

printf("Error reading ADC\n");

exit (1);
} alsze {

result = (buf [0)<<16) + (buf [1]<<8) + (buf[0]1);

}

return result;

ffIf power or speed are important, you can change the ADC resolution to a lower walue.

/f Currently set to SENSOR_CMD_ADC_4096 - set to a lower defined value for lower resclutionm
D1 = raw_convert(PRESSURE, OSR40398); // read uncompanszated pressure

D2 = raw_convert(TEMPERATURE, 0O35R4096); // read uncompensated temperature

/f calculate 1st order pressure and temperature correction factors (MS6803 1st order algorithm).
deltaTemp = D2 - zansorCoefficient=z [6] = pow(2, B);

sensor0ffset = sensorCoefficients[2] #* pow(2, 16) + (deltaTemp * sensorCoefficients[4]) / po
sensitivity = sensorCoefficients[1] * pow(2, 16)} + (deltaTemp #* sensorCoefficients([3]) / pow

/f calculate 2Znd order pressure and temperature (MS5803 2=t order algorithm)
temp = (2000 + (deltaTemp * sensorCoefficients[6]) / pow(2, 23)) / 100;
press = ((((D1 * senm=itiwity) / pow(2, 21) - sensorOffset) / pow(2, 15))} / 10);

//read PROM command
char command = OxAQ+2+pos;
int result;

if (write(file, &command, 1} != 1){
printf ("Error sending read PROM to deviceln");

13

MATE ROV - Final Report - Page 45

104 flexit(1);

}
if({read(file, buf, 2) != 2} {
printf ("Error reading PROM\n");
flexit (1);
} else {
result = (buf [0]<<8) + buf[1];
}
1 return result;
114 }
void reset (}{
char command = Ox1E;
if {(write(file, &command, 1) !'= 1}{

printf("Error sending reset to devicel\n");
}
usleap (10000);
}

unsigned char CRC{unzigned int cn_prom([1){
int cont;
unsigned int n_rem;
unsigned int crc_read;
unsigned char n_bit;

n_rem = 0x00;
crc_read = sensorCoefficients[7];
sensorCoefficients [T] = (O0xFF00 & (sensorCoefficients[7]) J;

for (cnt = 0; cnt <€ 16; cot++)
{ // choose LSB or MSB
if (cnt%2 == 1) n_rem "= (unsigned short) ((sensorCoefficients[cat>>1]) & O0xzO00FF);
else n_rem "= (unsigned short) (senszorCosfficients([cnt>>1] >> &);
for (n_bit = B; n_bit > 0; n_bit--)
{
if { n_rem & (OxBOOO))
1{
143 n_rem = (n_rem << 1) ~ 0x3000;
144 }
5 else {
n_rem = (n_rem << 1 };
}
}
}
n_rem = (Ox000F & (n_rem >> 12)} };/f // final 4-bit reminder is CRC code
sensorCoefficients [T] = crc_read; // restore the crec_read to its original place
return { o_rem ~ 0x00); // The calculated CRC should match what the device initally returned.

}

int init(char adapter_nr, char address)

1
snprintf (filename, 19, "/dev/iZc-%d", adapter_mr);
file = open(filename, O_RDWR);

if (file < 0){
printf ("Error opnening filel\m");
return -1;

14

MATE ROV - Final Report - Page 46

187 if (ioctl(file, I2C_SLAVE, address) <0){

165 printf ("Error setting up bus for slave operationi\n®);
e return -2;

7o }

1Tz resat{);

174 f/Read and store coefficients from PROM

s for(i=0; i<8;i++){
176 sensorCoefficients[i] = readPROM(i);
7T usleep (10000);
1TE }
T
160 unsigned char p_crec = sensorCoefficients[7 1;
181 unsigned char n_crc = CRC(sensorCoefficients); // calculate the CRC
163 /f 1f the calculated CRC does not match the returned CRC, then there is a data integrity issue.
184 // Check the connections for bad solder joints or "flakey" cables.
185 /f 1f this issue persists, you may have a bad sensor.
166 if (p_erc != n_erc) {
187 printf (“CRC ERROR\a");
T return -3;
169 }elseq
ffprintf ("CRC DK\mn");

1
1% return 1;
s }
154
we int main(int argec, char ta.rgv[])
1ns {
197 const char bus = 1; // I2C bus the sensor is on
198 const char addr = 0x76; // Address of the Pressure Sensor
199
200 if{init (bus ,addr)>0){
20
02 printf("Starting Read\n\n");
20 struct timeval tp;
20 while (1) {
208 gettimeofday (ktp,NULL);
206 unsigned lomg long millisecondsSinceEpoch =
207 (unsigned long long)(tp.tv_sec) * 1000 +
0 (unsigned long long)(tp.tv_usec) S/ 1000;
20 readSenszor();
210 printf ("“\rTemperature: {f C, Pressure: Yf mBar, Time: %1llu",temp,press,millisecondsSinceEpoc
211 fflush(stdout);
212 }
15 }
214 return 0;
21s }

Listing 8: msi803module.c {Python extension for the pressure sensor)

#include <Python.h>
2 #include "structmember.h”
s #include <sys/stat.h>
4+ #include <sys/ioctl.h>
s #include <sys/time.h>
« #include <fcntl.h>
7 #include <unistd.h>
= #include <math.h>

15

MATE ROV - Final Report - Page 47

#include <linux/i2c-dev.h>

PRESSURE 0b0
TEMPERATURE

#define
#define 0b10000
DSR256 0ObO

DSRE12 0Ob10

0SR1024 0b10O
DSR2048 0b110
DSR40%6 0b1000

#define
#define
#define
#define
#define

int 1i;

unsigned int sensorCoefficients [B];

typedef struct {
PyObject _HEAD
char adapter_nr;
char address;
int file;
} MS55803;

woid reset (M55803* self){

char command = 0Ox1E;

if (write(self->file, &kcommand,

1) 1= 1)4{

printf ("Error sending reset to device\n");

}
usleap (1000} ;
}

int raw_convert (MS5803#* =self,
1{

int result = 0;

char buf[3];

char typs,

char 0S5Rlevel)

char command = Ox40+type+08Rlevel;

if (write(self->file, kcommand,

1) 1= 1){

printf ("Error sending init conversion to device\n");

}
switch (OSRlevel)
1{
case 05R256
usleep(1000);
break;
case 05R512
usleep(3000);
break;
case 05R1024:
usleep(4000);
break;
case 05R2048:
usleepl G000);
break;
case 05R4096:
usleep(10000);
break;

usleap (3000);

command = 0x00;

16

MATE ROV - Final Report - Page 48

if (write(self-»>file, &command, 1) !'= 1){
printf ("Errer sending read sequence to deviceln");

}
usleep (1000);
if(read(self->file, buf, 3) 1= 3) {
printf ("Error reading ADC\n");
} else {
result = (buf [0]J<<16) + (buf[1]<<8) + (buf[0]);
}
return result;
}
int readPROM(MS6803* self, int pos)
i
//fread PROM command
char command = OxAO+2*pos;
int result = -1;
char buf [2];
if (write(self->file, kcommand, 1) != 1){
printf ("Error sending read PROM to devicel\n");
}
if{read(self->file, buf, 2} != 2} {
printf ("Error reading FROM\n"};
} else {
result = (buf [0]<<8) + buf [1];
}
return result;
}

unsigned char CRC(M35803#% self){
int cot;
unsigned int n_rem;
unsigned int crc_read;
unsigned char n_bit;

n_rem = 0x00;
crc_read = sensorCoefficients [T];
sensorCoefficients [T] = (OxFF0O0 & (sensorCoefficients[7]));

for (cnt = 0; cnt < 16; cot++)
{ // choose LSB or MSB
if (cnt¥2 == 1) n_rem "= (unsigned short) ((sensorCoefficients[cnt>>1]) & OxO00FF);
elsa n_rem "= (unsigned short) (sensorCoefficients [cnt>>1] >> B);
for (n_bit = &; n_bit > 0; n_bit--)
{
if { n_rem & (O0xBOOOD))
1{
n_rem = { n_rtem << 1)} - 0x3000;
}
else {
n_rem = { n_rem << 1 };
}
}
}
n_rem = { O0x000F & { n_rem >> 12 } };// // final 4-bit reminder is CRC code
sensorCoefficients [T] = crc_read; // restore the crc_read to its original place
raturn { n_rem ~ 0x00 }; // The calculated CRC should match what the device initally returned.
17

MATE ROV - Final Report - Page 49

}

static PyObject =
readSensor (MS5803* self)d{

ffIf power or speed are important, you can change the ADC resoclution to a lower walue.

/f Currently set to SENSOR_CMD_ADC_4096 - set to a lower defimed value for lower resolution
unsigned long D1 = raw_convert(self, PRESSURE, 03R4096); f/{ read uncompensated pressure
unsigned D2 = raw_convert(self, TEMPERATURE, O0SR4096); // read uncompenszated temperature

/{ calculate 1st order pressure and temperature correction factors (MS5B03 1st order algorithm).
double deltaTemp = D2 - sensorCoefficients[8] # pow(2, B);

double sensor(ffset = sensorCoefficients[2] * pow{ 2, 16) + (deltaTemp * sensorCoefficients[4]
double sensitivity = sensorCoefficients [1] = pow({ 2, 16 } + (deltaTemp = sansorCoefficients [3]

/f calculate 2nd order pressure and temperature (MSEB03 2=t order algorithm)
double temp = (2000 + (deltaTemp =* sensorCoefficient= [6]) / pow(2, 23)}) / 100;
double press = ({ ((D1 = senmnsitivity) / pow({ 2, 21) - sensorOffset) / pow(2, 15))} / 10)

return Py_BuildValue("dd", temp, press);

}
static void MS5803_dealloc (MS5803+ =elf)
i
self->ob_type->tp_free ((Pylbject=)self);
}

static PyObject =
MS5803_new (PyTypelbject *type, PyDbject #*args, PyObject #*kwds)
i

MS5803 =zalf;

self = (MS6B03 =)type->tp_alloc(type, 0);
if (self != NULL) {
self->file = 0;
salf -»adapter_nr = 1;
self->address = 0x76;
for(i = 0; i<8; i++){
sensorCoefficients [i]=0;

return (PyObject =)self;
}

static int
MESB03_init (M55803 *self, PyObject =args, PyObject =*kwds)
i

static char #kwlist[] = {"adapter_nr", "address", NULL};

if (! PyArg_ParseTupleAndieywords{args, kwds, "[ii", kwlist,
kself ->adapter_nr, kself->address))
return -1;
char filename [20];
snprintf(filename, 19, "/dev/iZ2c-Y{d", self->adapter_mnr);
self-»file = open(filename, O_RDWR);

if (self->file < 0){
printf ("Error opening fileln"};

18

MATE ROV - Final Report - Page 50

return -1;

}

if (ioctl(self->file, I2C_SLAVE, self->address) <0){
printf ("Error setting up bus for slave operation\n");
return -1;

}
reset(self);

f//Read and store coefficients from PROM
for(i=0; 1<8;i++){
sensorCoefficients[i] = readPROM(self ,i);
usleep (10000);
}

unsigned char p_crc = sensorCoefficients[7 1;
unsigned char n_crc CRC(self); // calculate the CRC

/f If the calculated CAC does not match the returned CRC, then there iz a data integrity issue.

/f/ Check the connections for bad solder joints or “"flakey"™ cables.
ff 1f this issue persists, you may have a bad sensor.
if (p_erc != n_crc) {
printf ("CRC ERROR\n");
return -1;
}elseq{
//printf ("CRC O0K\n");
}

return 0;

1

static PyMemberDef MS5803_members[] = {
{"adapter_nr", T_INT, offsetof(M55803, adapter_nr), 0,
“first name"},
{"address", T_INT, offsetof(MS55803, address), 0,
“last nama"},
{NULL} /+3Sentinel =/
};

static PyMethodDef MSE803_methods[] = {
{"read"”, (PyCFunction)readSensor, METH_NDARGS,
"Returns the sensor readings"

}3
{NULL} /=*Sentinel =/
};

static PyTypeObject M55803Type = {
PyObject _HEAD _INIT(NULL)

a, f* ob_size *f

"M55803 . M55B03", /* tp_name =/
sizeof (M55803), f* tp_basicsize */
a, [+ tp_itemsize *
(destructor)M35803 _dealloc, /+ tp_dealloc =
o0, /* tp_print =/

o, /* tp_getattr */

a, /* tp_setattr x

o, /* tp_compare */

o, /* tp_repr */

o, /* tp_as_number */

19

MATE ROV - Final Report - Page 51

o, /* tp_as_sequence */

o, /+ tp_as_mapping =/

o, /+ tp_hash =/

0, f+* tp_call *f

o, f* tp_str *f

o, f* tp_getattro *

o, f* tp_setattro =/

o, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /+ tp_flags */
"MS5803- Pressure Sensor", f+ tp_doc =/
o’

o’

o’

0’

o’

0

»

MS5803 _methods ,
MS5803 _members ,

(initproc)MSE803 _imnit,
0

L]
MS5803_new,
};

static PyMethodDef module_methods[] = {
{NULLY}
+;

PyMODINIT_FUNC
initMS6803 (void)
i

PyObject= m;

if (PyType_Ready (kM35803Type) < 0)

return;

m = Py_InitModule3 ("MS55803", NULL,
"Example module that creates an extension typﬂ_“);
if (m == NULL)

return;

Py_INCREF (kMSE803Type);
PyModule_AddObject (m, "M356803", (PyObject =)EMS5803Typel;

MATE ROV - Final Report - Page 52

	Glossary of Terms
	Abstract
	Introduction
	Competition Background
	Competition Overview
	Mission Tasks
	Task 1 – Shipwreck
	Task 2 – Science
	Task 3 - Conservation

	Specifications/Constraints

	Design
	1. Chassis
	2. Thrusters
	3. Ballast Control
	4. Tether
	5. Actuated Claw
	6. Electronics Enclosure
	7. Camera Enclosures
	8. Camera Software
	9. Electronics
	10. Top Side Software & Control
	11. ROV Side Software

	Testing
	Test #1:
	Test #2:
	Test #3:

	Learning Experiences:
	Appendix:
	Final Budget for our Project:
	Gantt Chart:
	Drawings of Components of the ROV:
	Thruster Test:

