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I. ABSTRACT

Drexel Aquatic Robotic Technologies (DART) consists of fourteen employees from business, math, 
and engineering backgrounds who are passionate in developing the next generation of innovative and 
cost effective remotely operated vehicles (ROVs). The company has developed a solution to satisfy 
the request of The Applied Physics Laboratory (APL) at the University of Washington for proposals 
(REP) of an ROV that can conduct tasks in saltwater and freshwater environments in the Pacific 
Northwest. DART has spent over eight months in research and development to create the ADAM 
(Aquatic, Diagnostic, Acquisition, and Measurement) ROV. ADAM ROV can perform surveys of 
vintage aircraft wreckage, recover the aircraft’s engine, install and recover a seismometer, install a 
tidal turbine, and install instrumentation to monitor the environment.
 
This is DART’s first year in operation, and so ADAM ROV is built upon the comprehensive research 
and past experiences of employees. DART created an onboard control system to reduce tether weight 
and increase modularity of the electronics tube.  The company used in-house development of com-
ponents via 3D printing for rapid prototyping and cost reduction. Cross-disciplinary collaboration 
between the mechanical and software divisions yielded a compact and sophisticated ROV with a 
high degree of durability and functionality. The electrical division experimented with various system 
integrated diagrams to improve efficiency of the power distribution system of the given power supply 
to ensure minimal voltage irregularities.
 
Through the collective effort of DART’s employees, ADAM ROV is the most suitable ROV to fulfill 
The APL at the University of Washington’s REP.

Figure 1: Back Row (Left to Right): Prem Patel, Jay Dave, Louie Feldman, Adam Schiavone, 
Arjun Pillai, Jacob Joseph, and Nate Albuck; 

Middle Row (left to right): Adam Feldscher, Jose Arguelles, Paula Klichinsky, and Sarah Larkin; 
Front row (left to right): Jordan Singer, Shaun Sebastian, and Andy Huang
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II. DESIGN RATIONALE

A. System Interconnection Diagram (SID)

The following are system interconnection diagrams of the air compressor lines/fittings and electronic 
systems used in ADAM ROV (Figure 2). 

Figure 2: System Interconnection Diagram (SID) of ADAM ROV
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B. Vehicle Core System

1) Mechanical

Frame

ADAM ROV’s frame implements a non-traditional design 
utilizing a cylindrical enclosure for the frame and buoyancy 
rather than employing a rectangular design for the frame and 
foam for buoyancy. Simplifying the design enabled the ROV 
to be nimbler when operating, smaller in size, and reduced the 
number of possible error sources. The watertight enclosure was 
purchased from BlueRobotics because of the reliability and 
durability of the product, which is critical to the success of 
the design since it will be housing the ROV’s onboard control 
and communication electronics. The enclosure has a spherical 
dome in the front and connects to a casted acrylic tube which allows the water to be easily displaced 
above or below the dome to flow the water flat across the cylindrical tube causing the reduction of 
the frictional drag on the ROV (Figure 3). The reduction of the frictional drag will decrease the load 
on the thrusters to propel the ROV in which would reduce current draw and increase battery life in 
the field. Through the use of a cost-benefit analysis, the frame design was justified in incorporating 
Polylactic acid (PLA) 3-D printed elements to reduce both the cost and the weight of mounted com-
ponents compared to other materials such as aluminum and Polyvinyl chloride (PVC), while not 
compromising the integrity of the frame.

PLA was selected over other plastics such as nylon due to its lower price, rigidity that mounting ele-
ments require, and rapid prototyping ability.  Bending and fracture analysis were performed on each 
mounting component part to find its yield and tensile strength ensuring and increasing the reliability 
of the mounts. Testing was also performed in regard to the fill density of each 3-D printed part from 
10-30% in order to identify the optimal fill of material. The optimal fill was determined to be 15% 
because it minimized the volume and met the requirements of the generated forces. The 3-D printed 
clamps and mounts were designed with M8 holes for increasing serviceability as payloads can be 
mounted and repaired easily due to the integration of 3-D printing and optimal attachment point lo-
cations. 

The casted acrylic enclosure of the ROV’s body required circular 
clamps to be fabricated serving as a mounting interface to the tube 
from any of the attachments. The clamps around the ROV provide 
anchor points for mounting brackets through the threaded M8 holes 
that were printed inside of the clamps (Figure 4). The clamps and 

Figure 3: Flow Analysis of Frame Design

Figure 4: Rendering of ADAM ROV’s 
Frame with Clamps
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brackets were designed to minimize the volumetric footprint and additional drag which was conduct-
ed through bending moment analysis and curving all edges to permit ease of water flow around the 
clamp or bracket. Due to low friction of the PLA and acrylic enclosure, the two surfaces are coated 
with a layer of rubber to increase friction and keep the 3D printed components from sliding on the 
low friction surface of the enclosure.

Buoyancy

To compensate for the weight of the frame, manipulator, and electronic components, ADAM ROV’s 
design significantly considered the various size enclosures available. The size of the enclosure was 
selected around three main factors: net buoyancy force generated (Archimedes’ Principle), dimen-
sion requirements of the electronics configuration, and neutrally buoyancy. The theoretical buoyancy 
force includes the volume of all the external components of the ROV, which were calculated by the 
3D modeling software. The other constants such as specific weight of water, mass of ROV, and gravi-
ty were collected and researched to find the net buoyancy force generated. The optimal enclosure size 
is a 101.6 mm diameter tube because it generated a net buoyancy force closest to zero. The control-
lability and maneuverability greatly increase as neutral buoyancy is achieved due to the equilibrium 
of forces on the ROV allowing the thrusters to be the singular applied force in creating a movement. 

Propulsion

ADAM ROV is powered by six 1250 Gallon per Hour 
(GPH) Bilge pumps from SPX. Instead of configuring 
the thrusters in a traditional linear direction to achieve 
full thrust, an OMNI drive was implemented. The 
OMNI drive involves four thrusters rotated with a 45° 
offset from the horizontal axis and 10° from the vertical 
axis to produce a force in two dimensions. Originally, 
these four thrusters were not vertically offset. The offset 
angle from the horizontal and vertical axis was 
optimized through vector analysis to ensure maximum 
sway, surge, yaw, and pitch thrust without greatly 
decreasing one another. Through testing and practice, 
we found that these angles were necessary for precise 
movements underwater. Two thrusters fixed in the vertical axis allowed for heave and roll move-
ments, which are located at the center of gravity of the ROV to take full advantage of the thrust 
(Figure 5). An important design consideration was placed on maximizing propulsion by developing 
protective shrouds that not only protect the marine life environment but also minimize the obstruction 
of water flow. It was desired to prevent obstructing water flow since this could cause the thrusters to 
be ineffective and increase the current draw. This OMNI configuration with the proper mesh guards 
equips ADAM ROV with six degrees of freedom, allowing to strafe in any direction. 

Figure 5: ADAM ROV’s Six Degrees of Freedom
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2)  Electronics

ADAM ROV’s electrical system provides power and communication among all servos and sensors. 
In addition, the system includes three dual channel brushed thruster drivers that utilize a sixteen chan-
nel pulse width modulation (PWM) controller and a Raspberry Pi 3 Model B. This microcontroller 
was preferred over other conventional single board computers (SBC) due to its robustness, low price 
point, and compact design. The configuration of the electronic components was selected after careful 
deliberation of the custom electronic plate dimensions 
and ring terminal connections within the enclosure. 
The electronic plate housed in the enclosure creates a 
centralized architecture for the electrical system 
(Figure 6), which enables a singular location for 
maintenance, troubleshooting, and any potential issues.

ADAM ROV’s stable power distribution allows for up 
to four thrusters to be simultaneously controlled via 
the thruster drivers. The on-board sensors and lighting are integrated into the ROV’s system through 
the Raspberry Pi, which permits the ability to automate and assist the pilot when operating the vehi-
cle. As a result of integrating many of the systems into a central processing unit, the communication 
and power distribution lines are minimal, creating a lightweight and cost-effective tether.

Power Distribution

ADAM ROV’s primary source of power is a 12 VDC battery that is transmitted from the surface 
through the tether to the first dual bus bar. The ring terminal bus bar inputs the initial power from the 
surface and distributes the output power to the three-dual channel brushed thruster drivers. The fourth 
output ring terminal set from the 12V DC bus bar is supplied to a 12V-5V converter which inputs the 
5V to a second dual bus bar (Figure 7). The four outputs of the 5V bus bar powers the feedback and 
control devices such as the microcontroller, sensors, and servos. The bus bars create a parallel system 
that reduces the probability of voltage spikes and resistance along all the electrical components. This 
ensures equal distribution of power under any loading setting and prevents any overcurrent causing 
the system to fail. A commercial bus bar was utilized due to the expanded feature set and lower mon-
etary and time cost than an producing a custom in-house bus bar design. As an extra safety measure, 
a self-recovery fuse was implemented on the 12V-5V converter so if it is tripped, the ROV will close 
the circuit to minimize damage within the system.  

Figure 6: Centralized Electronics 
Housing

Figure 7: Power Distribution from the Source to Both Buses
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Cameras

Due to the design of ADAM ROV’s frame and propulsion, a dual camera system was incorporated 
to ensure maximum field of vision (FOV) and environment safety. The Raspberry Pi V2 camera was 
installed inside the dome on a tilt and pan servo system allowing the primary camera to tilt and pan 
in any direction needed up to 180° from the initial axis. Raspberry Pi V2 camera is equipped with 
an 8 megapixels (MP) lens and 1080p video capabilities but a 130° FOV. Originally, the camera had 
a very limited 42° FOV, and we realized when practicing in the water that this was not enough. We 
then introduced a lens that increased our FOV while also fitting inside our dome without making any 
contact when tilting or panning. The utilization of tilt and pan system improved the overall control 
of the ROV by providing multiple video angles to the pilot without moving the ROV.  By utilizing 
this system, the battery and time trade-off would lead to better execution by reducing the amount of 
ROV movement causing less current draw and increase the time for operational tasks. The small size 
and easy integration of the Raspberry Pi V2 camera and the Raspberry Pi was the justifying factor in 
choosing this device over other brands of USB/ribbon cable video cameras. The secondary camera 
was fixed underneath the ROV to allow the pilot to navigate safely around the marine environment. 
The safety factor of the secondary USB camera was the driving force behind the decision in guar-
anteeing the ROV can survey the environment before, during, and after all missions are completed 
without any damage to the environment or organisms. The high definition and autofocus features of 
the Logitech USB C920 gave the best cost-over-quality trade-off, greatly aiding the pilot with clear 
and consistent video at all times.
	
Tether

ADAM ROV’s tether consists of multiple cables shielded by a 
Polyethylene Terephthalate (PET) braided sleeving to create a single 
flexible protective casing with a diameter of 10.16 mm which weighs 
a total of 2.2 kg (Figure 8). The casing of the tether allows for easier 
handling and storage which will reduce wear and tear on the cables. 
The tether has two 14 AWG power cables, one Category 6 Ethernet 
(CAT6) cable, one air pipe, and a closed cell neoprene foam. The one 12-5V DC-DC step down regu-
lator on ADAM ROV has an operating input of 6V to 40V. To establish a safety margin, a 25% to 30% 
voltage drop (Vdrop) under maximum load of 25 Amps (A) was considered acceptable for the power 
system. With the tether length being 20m, a 25% Vdrop corresponds to a resistance per length value 
of 3.3 mΩ/meter and 30% Vdrop corresponds to 3.6 mΩ/meter. These match the resistance AWG 
value of around 10 to 11 respectively in which the 10 AWG was chosen for the lowest possible Vdrop 
without compromising flexibility. The single CAT6 cable is used to establish an Ethernet connection 
between the onboard Raspberry Pi and a computer inside the on-shore computer. The air pipe is used 
to supply and exhaust the air to and from the lift bag using an on-shore air compressor. Additionally, 
the closed cell neoprene foam is utilized for achieving neutral buoyancy of the tether in any depth 
due to the air pockets in the foam not being able to collapse to create positive buoyancy. Apart from

Figure 8: Cross Sectional View of ADAM 
ROV’s Tether
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the first version of the tether, which had 10 AWG power cables and a much larger air tube, the current 
version allows for more flexibility to minimize hinderancing the maneuverability of ADAM ROV.

Control Box

The design rationale behind the control box was to create the simplistic and compact command center 
for ADAM ROV’s operation. The control box has limited wiring and electronic components such as 
motor controllers, power busses, and logic boards due to the ADAM ROV design of housing majority 
of the electronics device within its frame. The control box contains the computer, ROV power cable, 
voltage/amperage sensor, and a single pole single throw (SPST) “kill switch”. The “kill switch” is 
placed on the control box’s bottom plate to allow for quick disconnect of power to ROV if any safety 
concerns arise. The four main components of the control box are the top plate, bottom plate, excess 
wire holder, and computer bracket. The top and bottom plates were cut from sheets of high density 
polyethylene (HDPE) which are utilized to mount the computer and joysticks. The excess wire hold-
er is a wooden box that acts as a container to hold the ROV power cable that is extended from the 
control box to the DC power supply. The HDPE was choosing for the building material due to the 
ease of manufacturing and tensile strength which would be needed in creating a custom panel and 
withstanding the weight of the computer system. The wood in the box acted as mounts for the panels 
to attach to which would make for better and lighter support than aluminum or steel.

3) Software
	
ADAM ROV’s control system utilizes a surface laptop computer and an onboard Raspberry Pi 3 
Model B SBC for communication, data collection, and ROV control (Figure 9). The Raspberry Pi 
was selected over other competing SBCs due to the overall computing power provided by the Quad 
Cortex A53 CPU and availability of established software drivers. The communication between the 
surface command center’s computer and the ROV occurs using a CAT6 Ethernet connection and 
Internet Protocol (IP). By developing the on surface center software in a Linux operating system, it 
allowed for improved collaboration in software development and ease of component integration in 
the system. ADAM ROV’s on board computer operates in Python software which enables vast online 
resources such as libraries and drivers to provide rapid prototyping abilities. DART used online cloud 
server applications such as GitHub for online collaboration, software validation, and data storage.

Figure 9: Interconnection of Raspberry Pi with ROV System
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Network Protocol

DART’s software system was developed through several stages, but the initial stage was to design 
the network protocol (the communication between the surface command center and ADAM ROV). 
The network protocol essentially breakdowns into two main components: response and request. The 
response component entails various commands but the most pertinent is the “Do” command which 
controls the ROV’s movements, servos, and cameras. Whereas the request components capture the 
data specified by the software from the sensors and thrusters to receive feedback of the ROV’s status. 

Modules

DART has architected its software for ADAM ROV in such a way that it allows the program to be 
divided up into modules. This allows for easily debuggable, organized code with few dependencies. 
The program is split into networking, business, and controller modules.  Using a client-server model, 
the networking module receives instructions from the dashboard, and sends messages to let the oper-
ator know the status of the system (Figure 10). This module then unpacks these messages and sends 
them to the business module. The business module takes the command it received and sends it to the 
controller module where it will be carried out. Any information returned by these commands is col-
lected by the business module, where it can then be packaged up and set onto the networking module. 
The controller module is a set of classes that execute commands. When a certain command from the 
business module is executed, the corresponding controller will be activated to handle the request. 
This controller then calls upon the appropriate drivers which will interact directly with the hardware. 
Each module in this architecture is able extend their features, such as adding more controllers and 
commands, without affecting another module.

Figure 10: ADAM ROV’s Software Architecture
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Command Pattern

DART has taken advantage of common industry level software design patterns and incorporated it 
into the software system for streamlined communication and better solutions for commonly occur-
ring issues such as parametrization and optimization. Software design pattern is a general solution to 
a commonly occurring problem in which the developer can apply various options to solve an issue. 
For example, DART leveraged one pattern to enable abstract defined instructions for the ROV as a 
command (Figure 11). Each command has its own corresponding controller which knows how to 
carry out the request meaning the business module won’t need to know how to interact with speed 
controllers or servos, but rely on the fact that there is a controller who is responsible for this. During 
run-time, commands are placed in a queue so that actions are carried out chronologically. This helps 
to synchronize the flow of messages between modules and ensures that two conflicting commands 
are not executed at the same time. The flexibility of the command pattern also enables the ability to 
implement long running commands. These let the ROV carry out long running tasks, such as slowly 
closing the claw, or fading the LEDs over a period of time. These commands are executed on their 
own thread, to isolate them from the standard command execution.

Figure 11: Execution Procedure of Each Component on the ROV
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Semi-Autonomous Functionality

ADAM ROV employs an inertial measurement unit (IMU) sensor and a pressure sensor to enable 
semi-autonomous functions. As one of the toughest tasks in piloting an ROV is to maintain a head-
ing or direction due to external factors such as drag force and tidal currents. The IMU consists of a 
gyroscope, accelerometer, and a magnetometer which integrated into the software system can allow 
the ROV assist and hold position features.  The software for these features are designed in a com-
mand drive fashion which maintain its current “state” or position until a command is received that 
instructs it to do otherwise. To maintain position, current orientation and velocity feedback is given 
by the gyroscope in the means of angular acceleration. The data from the gyroscope can be integrated 
over time to find out our angular velocity and heading in degrees. By using the angular velocity and 
heading in degrees, ADAM ROV can detect minute changes in the three axis orientations in which 
the ROV will automatically adjust to the desired heading or direction and eliminate any drift in any 
other direction. The pressure sensor can convert the change in pressure from a set point to change in 
depth in meters in which will allow for set dive depth. ADAM ROV can be set to dive a specific depth 
by using the data from the sensor which will greatly help to reduce the role of the pilot when diving. 

Dashboard

DART’s software division developed a user 
friendly graphical user interface (GUI), or 
dashboard, that is responsible for processing 
input from both the pilot and co-pilot and 
distributing the output to the ROV thrusters, 
sensors, and servos (Figure 12). The GUI 
displays the systems diagnostic and sensor 
data while presenting telemetry data and 
video feed. The dashboard is written in 
Microsoft C# running on .Net 4.6. To handle 
the actual display of data and video from 
the ROV, MonoGame (a port of Microsoft 
XNA) software was implemented to give various 
methods of interfacing with the Xbox gamepads and a way to draw to the screen, as well as many 
utilities to perform vector calculus. To ensure ADAM ROV does not go above the maximum allowed 
current, a current and amp sensor is installed within the control box which is read by an Arduino and 
sent to the dashboard. This allows the ability to monitor the power consumption and detect any un-
usual power spikes that could indicate a problem or blow the inline fuse.

Figure 12: ADAM ROV Dashboard with Control 
and Vector Feedback
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C. Mission Specific Features

Manipulator
 
ADAM ROV is equipped with a manipulator mechanism designed and developed in-house. It is ori-
ented vertically to accomplish several tasks such as lifting the debris/engine, disconnecting the OBS 
cable connector, installing tidal turbine, collecting samples of eelgrass, and transporting I-AMP. The 
design of the manipulator revolved around two main concepts: task achievability and modularity. The 
components of the manipulator were 3D printed from PLA, which allowed for easy integration of a 
modular design into the mounting clamps (Figure 13). An array of M3 holes were designed for mod-
ularity through the ability to rotate positions and adjust the maximum opening of the manipulator. 
By introducing a three-component pincher, it allowed for improved collection methods compared to 
a single pivot point creating more load on the micro-servo. Additionally, one of the two pinchers is 
fixed at a point to decrease load on the servo and permit more weight to be applied to the manipula-
tor. An arm was developed to connect to the manipulator which would enable the pilot to have direct 
line of sight of the target or task. The manipulator adopts a vertically clamping mechanism where 
a micro-servo moving a pincher section opens against the fixed section up to 3.175 cm. This is an 
abundant amount of space for the pilot to pick up large objects easily.

 

Figure 13: Initial Concept to Final 3-D Rending of the Manipulator

Acoustic Doppler Velocimeter (ADV)
 
The Acoustic Doppler Velocimeter (ADV) was 
designed to attach to the mooring device at a given 
height from the lowest point. The design encompassed 
a hook into the ADV which will allow ADAM ROV to 
attach to the U-bolt on the mooring line (Figure 14). 
The hook was 3D printed in PLA and connected to a 
mini enclosed ballast filled with air allowing the ADV to float when attached to the mooring device. 
A U-bolt was incorporated into the design allowing the ROV to easily attach and handle the ADV in 
transportation and completion of the task. 
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Wreckage Zone/Maximum Power Generation GUI
 
For the two tasks of searching for the wreckage zone and 
calculating the maximum power generation for a tidal 
turbine, a graphical user interface (GUI) was developed to 
allow for quick and error free calculations (Figure 15). 
The GUI was developed in Python using the Tkinter 
library to create an interface that would enable the user 
to input the given data to get an output of the direction 
vectors and the maximum generated power. Behind the 
GUI, the inputted data is inserted into predetermined 
single function equations in which will return the 
appropriate results to the GUI.
 
Lift Bag

To remove the debris and return the engine to the surface, the mechanical division researched and 
designed a closed buoyancy assisted lift bag. The lift bag consisted of 0.45 m diameter latex balloon 
attached to a NPT and barrel connector, allowing air tubing to be connected, inflating the lift bag 
(Figure 16). The specific diameter of the balloon was chosen in respect to the lift force needed to lift 
the debris and engine. The lift bag is installed with a double-sided hook device that enables a U-bolt 
grabbing point for the ROV when attaching the lift bag to the debris or engine. The air tubing is sup-
plied on the surface through an air compressor with a three-way ball valve to release the air in the lift 
bag when moving to another task. The tubing was integrated in the ROV’s tether through a disconnect 
point where upon task competition the lift bag will be detached and the tube to be capped.
 

Figure 15: GUI Interface for Vector/Power Calculations

Figure 16: Lift Bag with U-Bolt Attachment for ROV Control
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Ocean Bottom Seismometer (OBS)
 
The Ocean Bottom Seismometer (OBS) system consists of a three-tier system: OBS unit (cable con-
nector cradle), release mechanism, and anchor. The cable connector cradle is a 36.75 cm length by
26 cm width by 25 cm in height rectangular box with an 
open top face for the placement of the cable connector. The 
cradle dimensions allow ease of placement of the cable 
connector and provide sufficient buoyancy to float to the 
surface when released by the acoustic release mechanism. 
The cable connector cradle is connected to the release 
mechanism via a 3D printed U-bolt plate with an 
integrated ferrite/neodymium magnet which attaches 
to the electromagnet outside of the release mechanism 
housing. The release mechanism is housed in a waterproof 
diver case, and on top of box aretwo 10mm BlueRobotics 
penetrators for electrical power and acoustic data 
collection via a microphone senor. To trigger the OBS, 
a 3000 Hz pulsed tone produced by a piezo buzzer on the 
ROV must be acquired by the microphone. The on-board Arduino Uno will approximate 
the principal frequency of the sound at a particular instant using the Fourier Transform, which is valid 
for three 1.5 second periods in a row of the signal played continuously to trigger the release of the 
OBS (Figure 17). Once triggered, the two relays will flip to induce an opposite electromagnet field 
by inverting the polarity of an electromagnet. Thus, releasing the ferrite/neodymium magnet from the 
release mechanism will cause the cable connector cradle to float to the surface. The release mecha-
nism has a 3D printed U-bolt plate attached to the bottom of the diver’s case and connected to the 1.7 
kg anchor holding the entire OBS system in place under water.
	
III. SAFETY

A. Safety Philosophy
 
DART’s highest priority is safety. We believe accidents can be prevented with the use of proper safety 
training and measures. Numerous safety protocols are enforced during every team meeting, guaran-
teeing the safety of the employees, ROV, and the environment. During each team meeting, a safety 
review is held to address a new topic of possible injury or harm that can be caused either inside the 
work environment or outside in the field.
 

Figure 17: OBS Release Mechanism Internal Schematic
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B. Vehicle Safety Features
 
Safety is integrated to the vehicle design and considered throughout 
ADAM ROV’s development (Figure 18). The mechanical engineering
division ensured the absence of sharp edges on ADAM ROV by 
rounding in the 3D model and coating each element on the ROV with 
a rubber coating. The body of the frame has open space for crew 
members to safely transport the ROV using rubber coat gloves. DART 
incorporates a custom IP-20 mesh guard to encapsulate the thrusters 
protecting against any type of marine life and human harm. The 
electrical engineering division installed a kill switch between the 
12V power supply and the tether and an inline fuse on the positive lead 
of the power supply to ensure the ROV can be shut down in the case 
of an emergency. Moreover, the interior body of ADAM ROV has LED status indicators to visually 
check the progress or issues before, during, and after operation. All the electronic components within 
the ROV are insulated connectors from ring terminals to ferrule to ensure proper connections and 
reduce the possibility of a short circuit. The software division programmed the voltage and amperage 
sensor to detect any spikes and abnormalities to alert the pilot of any issues with the ROV.
 
C. Testing Protocol
 
DART has established a strict testing protocol to ensure operational and environmental safety. Before 
testing ADAM ROV underwater, the on-deck staff must perform a systematic dry test since unantici-
pated problems are easier to resolve in air than underwater. A safety checklist was established by the 
company to be followed by all employees in launching, operating, and retrieving process (Appendix 
B). For example, the on-deck staff are not allowed to touch ADAM ROV unless the ROV is idle after 
completing the launching protocol. Following this process, injuries can be prevented by not allowing 
accidental activation of the thrusters and manipulator. In an emergency situation, any of the on-deck 
staff closest to the power supply must immediately cut off the power to avoid injury to the staff and 
the operating environment.
 
D. Testing and Troubleshooting Techniques
 
DART runs weekly tests of the ADAM ROV in water to assess its performance and stability for pos-
sible improvements. The vehicle underwent its first water test in late January 2018 and was initially 
tested in a 4 m deep pool for vehicle core functions such as movement, cameras, and buoyancy. Af-
ter the core functions were established, the company proceeded to a two-hour pool test to evaluate 
ADAM ROV’s performance in completing missions. Any unforeseen shortcomings in the design 
phase are discovered and we brainstorm ideas to address the issue. Throughout the testing periods, 
the 3-D printed parts fill density was constantly changed to understand the optimal fill for structural 
support and weight. For example, the ROV was increasing in negative buoyancy as more time was

Figure 18: SPX 1250 GPH Bilge 
Pump with Safety Sticker
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spent operating the vehicle in a single test. It was discovered that the 3D printed parts were holding 
water between the layers of the 3D printed material causing a slow leakage of water to fill the compo-
nents. Henceforth, each 3D printed material was coated in a synthetic rubber coating to seal the parts 
and not allowing any water fill into the pieces.
 	
DART’s approach to troubleshooting is to apply a root cause analysis (RCA) method, an industry 
standard process that involves isolating, diagnosing, and preventing the problem. Problems are usu-
ally discovered during or after a water test and engineers will begin to isolate the problem in the labo-
ratory for validity. Each component is diagnosed for the problem and thoroughly tested before being 
eliminated as a possible source of error. Once the problem is recognized, the problematic module will 
be either resolved by redesigning or monitored during operation to avoid triggering the issue.

E. Work Environment Safety Practices
 
All employees of DART are required to receive safety training and follow safety protocols while 
working in the laboratory. To ensure cooperation with all employees, waivers are signed to ensure 
all safety requirements are followed. Personal protective equipment (PPE) is made available at all 
machining and soldering stations including safety goggles, ear plugs, and respiratory masks. As part 
of the PPE, all employees in the laboratory or the field are required to wear rubber grip gloves, long 
pants, and closed toed shoes. DART requires a buddy system in the laboratory space for the safety 
and protection of the employee so any dangers can be reduced or help can be provided quickly if 
issues occur. Each machine and tool designated as potentially harmful, such as drill press, band saw, 
and or soldering stations, have a checklist protocol that must be completed and signed off after each 
use to ensure safety practices are followed. At DART, every employee is encouraged to help each 
other when unsafe practices are noticed to guarantee the safety of all. The employees are encouraged 
to proactively update the safety protocol when better practices or a dangerous situation arises to pre-
vent the same injury in the future.

IV. PROJECT MANAGEMENT
 
A. Organization, Structure, Planning, and Procedures
 
DART promotes cross-disciplinary collaboration and open mindedness as a company culture. The 
organization of the company is a flat structure which day-to-day operations are self-managed within 
each division in the organization. The company is divided into four divisions: mechanical, electrical, 
software, and marketing which enables efficient work flow from the initial concept to the marketing 
platform. The company holds bi-weekly meetings to communicate goals throughout the company and 
update the Gantt chart to keep track of the timeline. Each division sets weekly goals in addition to 
discussing and resolving any obstacles with the development of the ROV. During the development of 
the ROV, 3D designs and simulations occurred throughout of development of any part to reduce the
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waste of resources such as 3D filament and plastic sheeting. However, the final decision is a collec-
tive input from the company as a whole to ensure all options are discussed, creating the best possible 
outcome. 

During DART’s first year in operation, many employees were not involved in underwater robotics 
field compared to other member who have more experience in the underwater robotics environment. 
The integration of experienced and inexperienced divisions was critical in fostering a mentoring and 
collaborative environment. This type of environment fosters rapid integration, leading to a thorough 
understanding of underwater robotics concepts and development process of an ROV. The Gantt chart 
was used as a tool to understand the priorities of the company that needs to be addressed (Appendix 
B). In addition to the Gantt chart, an online scheduling tool was used in conjunction to complete 
day to day tasks and problems. The online scheduling tool was through Google Calendar in which 
DART’s CEO and division leads would establish weekly tasks/problem to be completed by a certain 
deadline following the Gantt chart timeline. If issues arise where the deadline is not met, the entire 
company will have a meeting regarding the problem and discuss the adjustment to the Gantt chart 
and Google Calendar timeline. By having all the company staff at the meeting, it ensures the entire 
company is aware of the issue and can be mitigated or eliminated the next time.

DART is comprised of four divisions: mechanical, electrical, software, and marketing which ensures 
proper engineering principles and business strategies are followed from the initial concept to the 
final product. The mechanical consisted of four employees who used various technical resource to 
research and develop hydrodynamic models to identify the optimal frame design that reduces the 
frictional force or drag on the ROV. Another task mechanical division was asked to design and man-
ufacture a manipulator, lift bag, OBS, and ADV required by the APL at University of Washington 
request for proposal. The electrical division was responsible for the configuration of all the on board 
electronics which included in single board computer (SBC) and thruster controller selection. Also the 
electrical division designed and wired the power distribution system from the control box through the 
tether to the ROV. The software division responsibilities entailed in developing a custom dashboard 
and software program which integrates all the ROV’s sensors to assist the pilot through semi-auton-
omous facilities to increase performance. Finally, the marketing division assist the organization to 
make business decisions in marketing  pitch, ROV material selection, and all associated paperwork.

B. Budget and Cost Projection
 
We developed the budget for ADAM ROV first by understanding what was required of the ROV to 
complete the tasks (Appendix C). As a newly established company, a large sum of funds went toward 
the mechanical and electrical division, buying new components since no previous resources were 
available. The company understood that the success of the robot would come from the mechanical 
and electrical integrity of the ROV. Meticulously selecting parts and allocating the appropriate funds 
toward the components meant that the company would be able to reuse some of parts in the future. 
For the software division, a smaller sum of the budget was apportioned due to open source code, and 
low cost commercial hardware that can be integrated into the ROV. All sources of income came from
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Drexel University, in order for us to buy new tools, parts for the robot, 3D printing material/printer, 
and to be able to travel.

V. CHALLENGES
 
A. Non-Technical Challenges
 
This is DART’s first year in operation, and the company 
relied heavily on rapid prototyping with a low cost by 
using the 3D printing resources donated by Drexel 
University. However, the company was faced with the 
logistical aspect of changing locations and offline issues 
of 3D printers. The company would make a printing 
request, only to have it bounced around several departments until it could be completed or denied be-
cause of machine maintenance (Figure 19). This would cause large delays in the requested date to the 
actual pick up date, leading to major changes in the testing timeline. This problem was alleviated by 
identifying an offsite 3D printer that was available before the requested day for pick up. Team work 
and communication ensured that all 3D components thereafter were printed on time with high accu-
racy. Another organizational challenge was attendance for all employees since some are part-time. 
Not having all employees present every day allowed for the possibility of miscommunication and a 
decrease in production. To avoid this, weekly departmental meetings were held after work hours, so 
that all employees were kept up to date.

B. Technical Challenges
 
One challenge that DART faced was perfecting the release mechanism of the Ocean Bottom Seis-
mometer (OBS). The release mechanism of the OBS involves an acoustic selective release mecha-
nism. ADAM ROV’s buzzer would play three consecutive 3000 Hz pulse signals must register in the 
OBS microphone sense to release it. Once the microphone sensor registers the signal, two relays are 
triggered to inverse the electromagnet, causing an inverse in the electromagnetic field, repealing the 
ferrite/neodymium magnet combination to release the OBS. Although the software of the OBS was 
consistent in detecting the acoustic signals, when testing with a neodymium magnet, the OBS release 
mechanism would cause false positives due to the large electromagnetic field flip associated with the 
stronger magnet. After further research into magnetic fields and electronics, it was noted that most 
modern electronics are made with magnetic material so the disturbance of the field or field inverse 
would short out the processor. This means that the combination of the electromagnet and neodymium 
would cause the microcontroller to restart because the energy of the field change was too sudden 
for it to adjust. Through further research and experimentation, the solution of using a combination 
magnet and separation plate between the magnet and OBS release mechanism was chosen to reduce 
the magnetic field change. By testing the design of the combination ferrite and neodymium magnet, 
it was concluded that using 3.175 mm plate in-between two neodymium magnets on the top and a 
single ferrite magnet at the bottom to achieve the results need to accomplish the task.

Figure 19: Third Incident of a Broken 3D Printer Nozzle
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VI. LESSONS LEARNED
 
Mentoring
 
This year, there was a strong focus on peer to peer mentoring as 
many members from the team were new to the underwater 
robotics while some had background knowledge from previous 
robotics competitions. It was critical to ensure all new members 
were trained and taught in the various technical skills and safety 
awareness needed to design, develop, and operation an ROV. The mechanical division learned how to 
use laboratory tools to ensure safety of members and the lifespan of the tools. More advance lessons 
taught to reduce waste material and ease of assembly options to better the mechanical design (Fig-
ure 20). The electrical division learned the electronic theory to get accustomed with digital sensors 
and power distribution systems. The software division was familiar with C Sharp so their software 
was reviewed and tested early in the design process.  The team spent a considerable amount of time 
together, growing together in their knowledge, confidence, and passion for underwater robotics tech-
nologies which help with communication and voicing their opinions.
 
Interpersonal

The team spent a considerable amount of time together, growing together in their knowledge, confi-
dence, and passion for underwater robotics technologies. The focus on mentoring created an environ-
ment where all employees were comfortable with asking questions and depending on coworkers for 
help when they needed it. This open, judgement-free environment allowed for this knowledge to be 
shared and also increased employees communication skills. There were some employees who tended 
to be reserved when DART first started, but as the year progressed, their confidence grew and they 
became more comfortable with voicing their opinions. It was rewarding to watch employees improve 
both their soft and hard skills throughout the year.

Integration of Sensors
 
The introduction of sensors in DART deepened the company’s knowledge on sensor application to 
automate various processes. By utilizing the gyroscope, accelerator, and pressure sensors, it is was 
possible to design a pilot assist function for operating the ROV. These sensors allow live feedback 
into the software to adjust maximum propulsion and reach set locations. Learning how to operate the 
sensors was quick as it only required users to power and communicate via microcontroller to receive 
the feedback data. The challenge with the sensors was the translation and filtering of data to find 
crucial values to communicate with and assist the ROV in its tasks. By including more sensors into 
the design, it allows for the growth of the electrical and software divisions experience in designing 
autonomous systems which can be applied to almost any situation or environment.
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VII. Future Improvements
 
3D Layered Printing
 
In the past year, DART has been using 3D printing as a main source of manufacturing for all structur-
al and functional components of the ROV. The PLA material used in the 3D printing was an excellent 
option for the cost versus tensile strength, but the material absorbed water into the layers of printing.  
The water absorption would vary depending on the time it was submerged underwater, which would 
cause issues in buoyancy as time elapsed. DART corrected this issue by coating the material with a 
synthetic rubber. While this did solve the issue of water absorbing into the material, it caused over-
whelming delays in the cost, time, and complexity of the 3D printing and an increase in manufactur-
ing costs. In the future, improving the design of the printed objects and changing the 3D printer pa-
rameters such as nozzle size and fill, the 3D printed components would be more easily waterproofed. 
Despite this, DART engineers still strive to improve the present design from previous developments.

VIII. Reflections
“Becoming DART’s first Vice President and joining the software team 
has allowed me to make countless amounts of memories and develop 
various new skills. Stepping into a leadership position, especially in 
this team’s first year, was definitely a challenge at first. Along with my 
other board members, we not only had to focus on creating a functional 
robot, but also on building a team strong enough to compete and 
succeed in competition. Working on the software for the ROV has taken what I already know about 
programming and advanced it to another level. While learning computer science and software en-
gineering skills in class, I was able to apply them through the software team’s work, which ranged 
from designing efficient and robust software to applying theory. Being a part of this team has taught 
me not only underwater robotics, but also what it is to be a part of a development team, from both a 
leadership and technical role.  Solving the problems we have experienced, whether it was legislative 
or technical, made being a part of this team more and more rewarding as we tackled them head on.” 
– Jose Arguelles

“Joining DART has been a great decision. From the verybeginning, I 
could start chipping away at our goal of creating a ROV. Being a part
of the electrical division has given quite an insight as to how to 
efficiently power the entire vehicle without a drop-in power from the 
start of the tether to the ROV. It has enhanced my problem-solving 
skills by aiding in finding leaks in the electronic enclosure and helped 
with creating neutrally buoyant tether from scratch through theoretical 
calculations. I was even able to gain mechanical engineering and computer programming skills, as 
well as project management skills, by being able to freely collaborate between all the disciplinary 
teams. I look forward to continuing to learn with the team for the rest of my college career!” – Arjun 
Pillai 
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Appendix B: Operational Checklist
 
Pre-Power:
☐ Clear the area of any debris/obstructions
☐ Check to see if power supply is “OFF”
☐ Connect Anderson connectors to tether to  	
     power the supply
☐ CHECK ROV
	 ☐ Check Claw and OBS Mechanism
	 ☐ Check Electronics Tube and Bus Bars
Power Up:
☐ Pilot boots up the Laptop
☐ Pilot calls team to their attention
☐ Co-Pilot calls out, “Power On” and moves      	
     power supply to “ON” position.
☐ SHORESIDE team checks to see if ROV is on    	
    by checking electronic status lights.
☐ SHORESIDE puts ROV underwater under 	
   control and makes sure it remains stationary.  	
   When ROV is ready they call out “ROV is 		
    Ready”
☐ Pilot takes control of ROV and performs    	
     thruster test.
☐ The SHORESIDE team puts ROV underwater 	
     under control and makes sure it remains   		
     stationary.
☐ If no issues found, continue to Launch 
     Procedures.
Launch:
☐ Pilot calls for Launch of ROV and starts timer
☐ SHORESIDE team lets go of ROV and calls     	
     out “ROV Released”
☐ Mission tasks are commenced
Bubble Check:
☐ If bubbles are spotted during mission, pilot re	
     surfaces the ROV
☐ Co-Pilot calls out “Power Off ” and turns off  	
     the power to the ROV

☐ SHORESIDE team retrieves the ROV
☐ If after trouble shooting time remains 
    continue to Power Up Procedures.
Loss of Communication:
☐ Co-Pilot checks the tether and laptop 
     connection on the surface
☐ Pilot attempts to reset the program 
     controlling the ROV
☐ Co-Pilot cycles through the power supply
☐ If any of these steps restarts communication, 	
     continue mission.
☐ If all these steps fail, the mission stops, the 	
    co-pilot turns off power and calls out “Power 	
    off ”
☐ SHORESIDE team retrieves the ROV
ROV Retrieval:
☐ Pilot signals for ROV retrieval to 
     SHORESIDE team
☐ SHORESIDE team member puts arms in 
    water up to the elbows and retrieves ROV 
    once contact is made with ROV.
☐ SHORESIDE team yells, “ROV retrieved” and 	
     pilot stops timer. 
Demobilization:
☐ Co-pilot turns power supply off and calls out 	
    “POWER off ”
☐ SHORESIDE team inspects ROV for any dam	
    ages or leaks that might have occurred during 	
    the mission.
☐ Pilot stops program controlling the ROV and 	
     powers off the laptop.
☐ Anderson connectors from the tether are dis	
     connects and removed from the power supply.
☐ Cameras and monitors are turned off.
☐ Team makes sure area is clean and then 
     vacates the area.
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Appendix C: Budget

Appendix D: Cost Projection
Type Item Market Price (USD)

Purchased ATC/ATO Inline Fuse Holder $5.18
Purchased 2.1mm Straight DC Coaxial Power Plug to Powerpole Adapter 6 ft. $15.98
Purchased 30 Amp Toggle Switch SPST On-Off $15.95
Purchased Raspberry Pi Camera Module V2 - 8 Megapixel,1080p $29.45
Purchased JacobsParts DC Barrel Jack $3.95
Purchased Pololu 5V, 15A Step-Down Voltage Regulator $39.95
Purchased Adafruit NeoPixel Digital RGBW LED Strip $17.95
Purchased Missile Switch Cover - Red $1.95
Purchased Blue Sea Systems DualBus Plus 150A BusBar - 1/4 $23.73
Purchased 22" Black Tactical Weatherproof Equipment Case $59.99
Purchased 102VNTCX5000MCR 10 AWG /2 Conductors $81.00
Purchased 10-CONDUCTOR SHIELDED CABLE W/ DRAIN $6.20
Purchased 3/4" PET Expandable Braided Sleeving - 25Ft (Yellow) $40.77
Purchased Uxcell Electomagnet $15.54
Purchased Marine Epoxy $18.00
Purchased Shapenty White Plastic Film Canister Holder $7.90
Purchased Electret Microphone Amplifier - MAX4466 with Adjustable Gain $6.95
Purchased 45 Amp Unassembled Red/Black Anderson Powerpole Connectors $36.99
Purchased Lucas Oil 10682 Marine Grease - 3 oz (Pack of 3) $9.76
Purchased DEDC 480Pcs Insulated Wiring Terminals Wire Connectors Assortment Electrical Crimp Terminals Kit $15.38
Purchased Xbox One Remote $42.95
Purchased Dual Channel 10A DC Motor Driver $74.34
Purchased Logitech 963290-0403 Extreme 3D Pro Joystick $34.99

$604.85

Purchased ATP IMBIBE NSF 61 Polyethylene Plastic Tubing $18.23
Purchased Waterproof Micro 180° Rotation Servo $27.99
Purchased Watertight Enclosure for Electronics $215.00
Purchased Cable Penetrator for 8mm Cable $52.50
Purchased Mini Pan-Tilt Kit - Assembled with Micro Servos $18.95
Purchased 316 Stainless Steel Hex Head Screw $7.99
Purchased 18-8 Stainless Steel Socket Head Screw $12.13
Purchased HATCHBOX PLA 3D Printer Filament, Dimensional Accuracy +/- 0.03 mm, 1 kg Spool, 1.75 mm, Black $22.99
Purchased HATCHBOX PLA 3D Printer Filament, Dimensional Accuracy +/- 0.03 mm, 1 kg Spool, 1.75 mm, Blue $28.00
Purchased 18-8 Stainless Steel Hex Nut M3 $5.36
Purchased 18-8 Stainless Steel Socket Head Screw M8 x 1.25 mm Thread, 10 mm $14.10
Purchased Sanatec High Density Polyethylene Sheet, Matte Finish, 1/4" Thick, 36" Length x 36" Width, Blue $33.40
Purchased Sanatec High Density Polyethylene Sheet, Matte Finish, 1/4" Thick, 24" Length x 36" Width, Yellow $24.98

Parts Donated SPX 1250 GPH Motor Cartridge $239.94
Purchased 3D Printing Service $56.38

$777.94

Purchased Raspberry PI 3 Model B A1.2GHz 64-bit quad-core ARMv8 CPU, 1GB RAM $35.70
Purchased 9DoF Razor IMU M0 $49.95
Purchased 16-Channel Servo Hat for Raspberry Pi $17.50
Purchased SanDisk Ultra 32GB microSDHC UHS-I Card with Adapter $16.90
Purchased Arduino Uno R3 Microcontroller A000066 $19.99
Purchased Tolako 5v Relay Module for Arduino $5.80
Purchased RJ45 Gold Plating Connectors $6.99
Purchased Cat6 Stranded UTP Ethernet Cable $15.49
Purchased LED Controller $7.89

$176.21
$1,559.00

Software Sub-Total
ADAM ROV Cost

Electronic Components

Mechanical Components

Software Components

Electronics Sub-Total

Mechanical Sub-Total
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Airfare (14 members) 7,700.00$    Electrical Components $604.85 Parts and Materials (Drexel College of Engineering) 1,600.00$  
Hotel (4 Nights, 7 Rooms) 4,172.00$    Mechanical Components $777.94 Registrion Fees (Drexel Student Organization Fund) 500.00$     
Rental Van 225.00$       Software Components $176.30 Airfare (Drexel Electrical Engineering Department) 5,000.00$  
Total 12,097.00$  Total $1,559.09 Total 7,100.00$  

SponsorshipsTravel Expenses ADAM ROV Development


