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‭Abstract‬
‭The Underwater Remotely Operated Vehicles Team (UWROV) at the University of Washington is excited to present‬
‭Boxfish‬‭, our Remotely Operated Vehicle (ROV)‬‭designed to complete tasks for the 2024 MATE Explorer Challenge‬‭,‬
‭including maintenance of the Coastal Pioneer Array & SMART Cables, supporting stewardship of marine ecosystems‬
‭from the Red Sea to Tennessee, and deploying MATE Floats for ocean health monitoring. UWROV’s‬‭Teamwork‬
‭approach was to follow agile principles while focusing on iteration and safety across disciplines and systems. Our‬
‭Design Rationale‬‭was informed by the mission requirements for the tasks specified in the MATE RFP, leading us to‬
‭develop an ROV with safe, consistent performance, and modular adaptability to specialized mission profiles. This‬
‭includes a modular manipulator system that enables switching to a specialized tool for every MATE task, a software‬
‭copilot that aids the pilot in ROV operations, and extensive custom electronics designed within the performance‬
‭envelope specified by the MATE RFP. We emphasized‬‭Safety‬‭throughout our systems design, lab environment, and‬
‭operational procedures, and verified MATE Task performance through 32+ hours of testing across 13+ in-water test‬
‭sessions, collecting data to inform the‬‭Critical Analysis‬‭and improvement of Boxfish’s systems. UWROV maintained‬
‭thorough‬‭Accounting‬‭of income and expenses, resulting in an efficiently and sustainably developed ROV.‬‭Boxfish‬‭is‬
‭optimized for the tasks specified in the MATE RFP while prioritizing safety, and is therefore ready to be deployed‬
‭at the MATE Championship to demonstrate its mission capabilities.‬
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‭Teamwork‬
‭Project Management‬
‭Company and Personnel Overview‬
‭Underwater Remotely Operated Vehicles at the University of‬
‭Washington (affiliated with the College of the Environment’s‬
‭School of Oceanography) is a team of undergraduate students‬
‭that designs, builds, markets, and competes at the MATE ROV‬
‭Competition. Members of UWROV collaborate in‬ ‭Fig. 1A. Example of scheduling over several weeks.‬
‭interdisciplinary project-based subteams‬‭which focus on specific components of the ROV and MATE ROV Challenge.‬
‭For a full list of employees and their roles and responsibilities, see the‬‭Title page‬‭.‬
‭Schedule‬
‭UWROV makes use of an‬‭‘Agile’‬‭development methodology, utilizing short-term, interdisciplinary project subteams in‬
‭order to work towards larger-scale, long-term goals for the ROV. Planning is done early in the season, with subgroup‬
‭leads working with the team during September and October in order to determine general deadlines for these goals.‬

‭This focus on careful, early planning is reflected in the overall timeline of UWROV’s work. Onboarding new‬
‭members occurs in October, with returning members working to assist new members as they familiarize themselves‬
‭with the ROV systems as well as the team’s structure. The months of October and November are then spent reviewing‬
‭what was built in the previous year, ensuring that systems and technology work as intended. The latter half of‬
‭November, December, and January are then focused on ideation, with members exploring new possibilities for the‬
‭ROV. Finally, following this period of investigation, the most efficient and practical ideas then become the focus of the‬
‭team during April and May. Regular, medium-term planning breaks down milestones into achievable chunks (Fig 1A).‬

‭UWROV holds weekly meetings on Monday and Sunday. Monday meetings are primarily centered around‬
‭administration, setting the direction for the team’s work for the coming weeks. Sunday meetings are centered around‬
‭project work time and‬‭resolving blockers‬‭that arise.‬‭In-water testing is conducted frequently based on minor‬
‭iterations made to the ROV. Saturday is designated for longer, more in-depth testing bouts.‬
‭Resources, Procedures, and Protocols‬
‭Our company emphasized collaboration and communication in our workflow, making use of cloud-based real-time‬
‭collaboration technologies as quick and convenient workspaces and encouraging interdisciplinary project work.‬

‭Interdisciplinary project subteams regularly recorded their progress on a Google Slideshow, which was‬
‭presented to the whole team at the start of each meeting. During these presentations, project subteams were able to‬
‭share hurdles‬‭encountered in development and ask other subteams for assistance with these issues.‬

‭Google Workspace was used for any sharing of all materials; data, CAD files, and visual aids were available to‬
‭the entire team on a shared Google Drive. This allowed each team member access to the same data, promoting‬
‭transparency and clear communication.‬

‭A Discord server was the primary platform of communication, as it allowed us to organize conversations by‬
‭subject, streamlining remote communication across project subteams. Onshape CAD, KiCAD, and Github were utilized‬
‭as more technically-focused platforms for CAD-focused collaboration.‬

‭Our team also relied on external software resources to efficiently manage projects and outputs. One such‬
‭resource used by the team was‬‭Notion‬‭(see Fig. 1B). Through this platform, employees were able to organize projects‬
‭by type, priority, skill level, and completion status. Notion works alongside pre-existing project management systems,‬
‭integrating easily into the workflow of UWROV.‬

‭Fig 1B: Table View of UWROV Tasks in Notion‬
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‭Design Rationale‬ ‭Fig. 2A (right): Boxfish image reminiscent of ROV Boxfish‬

‭The name‬‭Boxfish‬‭originates from the yellow boxfish‬‭(Ostracion cubicum)‬‭, a reef-dwelling fish‬
‭notable for its cube-like-body and impressive agility.‬‭Boxfish‬‭takes lessons from past years previous‬
‭years designs such as‬‭Barreleye‬‭and is the product of rigorous iteration, innovation, and testing.‬

‭For this season’s ROV, the UWROV team focused on improving the functionality and cost-effectiveness of the‬
‭ROV. The company focused on designing and selecting components that are effective in competition and testing, and‬
‭adaptable to the various tasks performed by the ROV, while implementing tangible changes that could be‬
‭implemented with existing systems and infrastructure. All parts of the ROV were subject to revision to better fit to the‬
‭challenges this year, there was an increased focus on the improvement of the manipulators to have a specialized,‬
‭thoroughly tested, high-performing solution to MATE tasks (see‬‭Payload and Tools‬‭section).‬
‭Conceptual Ideation and Selection Process: Problem Solving‬
‭Fig. 2B: An example of an idea-to-product process.‬

‭Throughout the process of designing‬‭Boxfish‬‭and related systems, UWROV made extensive use of data collection to‬
‭inform design revisions. Relevant trade studies are included where applicable throughout the documentation.‬

‭Systems Approach‬
‭Boxfish‬‭’s system design approach focuses on subsystem‬‭integration and iteration. This involves designing the‬
‭mechanical, electrical, and software components of the ROV in concert, all while making reasonable compromises to‬
‭maximize total system performance for MATE tasks.‬

‭Our‬‭digital twin system‬‭involves electromechanical CAD integration. All of the ROV’s physical components are‬
‭modeled together, reflecting their real-life layout. Modeling interactions between new parts and existing components‬
‭minimizes design oversights when prototyping new parts. We also examine details such as wire lengths and camera‬
‭visibility in our modeling. While these elements can be tested with the physical ROV, we save time and effort by‬
‭avoiding unnecessary physical prototypes. Finally, the digital twin is hosted online and can be accessed at any time,‬
‭accelerating remote prototyping of new parts and promoting collaboration across different subsystems and groups.‬

‭The CAD model of the ROV is also utilized to develop the software control system. The motor positions &‬
‭orientations are used directly to generate control mappings using‬‭Numpy‬‭, a Python library. This significantly‬
‭streamlines the controls development process, where controls are easy to integrate and update as the design evolves.‬

‭By analyzing new components digitally before physically constructing and testing them, we have confidence in‬
‭how the ROV will function before the components are integrated. This reduces overhead with in-water testing: rather‬
‭than debugging large issues pool-side, we have the time and ability to make more nuanced refinements.‬

‭In conjunction with the digital twin system, the overall adaptability and modularity of our ROV allows for‬
‭efficient mission operations.‬‭For example, in our modular manipulator design, each mission task has a dedicated‬
‭swappable manipulator which is designed to complete the task efficiently. Our digital twin approach makes it‬
‭straightforward to develop these different manipulator options in parallel in preparation for the mission tasks.‬
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‭Vehicle Structure‬
‭The structure of‬‭Boxfish‬‭prioritizes a small form factor, maneuverability, and modularity. Smaller‬‭ROVs come‬

‭with several benefits and drawbacks. While the small size of‬‭Boxfish‬‭allows for easy transportation, reduced‬‭cost of‬
‭materials, and navigation of narrow mission sites such as coral reefs, it also increases the complexity of maintaining‬
‭stable control of the ROV. To address this, we have focused development towards autonomous stabilization software,‬
‭using the six motors of‬‭Boxfish‬‭in the same way that real life Boxfish utilize their fins for stabilization.‬

‭The frame of‬‭Boxfish‬‭consists of‬‭aluminum goBILDA Low U Channel‬‭and‬‭Dual Block Mounts,‬‭and‬‭all‬
‭mounting and frame construction is standardized to‬‭M4 hardware‬‭to improve serviceability and modularity. Although‬
‭goBILDA is more expensive than other frame options, its lightweight material and variety of standardized interacting‬
‭locations make it adaptable for the mission. For example, the ballasting system of‬‭Boxfish‬‭utilizes ballast that is‬
‭interfaceable with the goBILDA frame via‬‭M4 hardware‬‭, allowing for ballast to be removed, added, or shifted to nearly‬
‭anywhere on the frame. This modularity is essential for completing MATE tasks in a variety of environments,‬
‭particularly when adjusting from saltwater to freshwater. The modular manipulator system was integrated directly‬
‭into the frame for improved robustness in a variety of operating conditions.‬

‭Our pressure hold consists of a clear‬‭acrylic‬‭cylinder and front plate with an‬‭aluminum‬‭back plate.‬‭The cost of‬
‭machining aluminum and acrylic is much lower compared to more traditional options for materials in a corrosive‬
‭environment like titanium and stainless steel, making them economical options. Therefore, we traded off some‬
‭lifespan of the vehicle in exchange for significantly lower cost, which is acceptable for the MATE task use case. Pressure‬
‭hold parts were turned on a lathe, with special care paid to smooth finishes for good sealing, and broken/chamfered‬
‭edges for personnel, wiring and O-ring safety. Our custom pressure hold is designed to be as large as possible while‬
‭fitting comfortably in the frame and staying dry at MATE task depths, increasing floatation and volume for electronics.‬

‭Vehicle Systems‬
‭The component systems and materials on‬‭Boxfish‬‭were selected to perform MATE tasks based on‬‭data from previous‬
‭years of development and ruggedized testing procedures. The manipulator base was tested at several locations on our‬
‭modular frame for‬‭task accessibility‬‭and‬‭piloting visibility‬‭, ultimately positioned in a low, centralized‬‭location to‬
‭minimize the impact on piloting when transporting large objects like the Probiotic Irrigation System in task 3.1‬

‭Custom structural components were printed in PLA due to its non-toxicity and low cost. Each of the modular‬
‭manipulators is printed in PLA as well, allowing for rapid,‬‭cost effective‬‭, parallelized development of tooling for tasks‬
‭with very different requirements, such as recovering Sediment Samples, activating Irrigation Systems, and connecting‬
‭Recovery Lines.‬

‭Previous ROVs had used nickel-plated fasteners for their moderate corrosion resistance, but we found that‬
‭over time these would still degrade.‬‭Boxfish‬‭uses exclusively 316 stainless steel hardware for its superior corrosion‬
‭resistance, which, while more expensive initially, does not need to be replaced over time, saving on costs over multiple‬
‭deployments to ocean environments when deploying SMART Cables.‬

‭This year, our surface station evolved through several iterations, including a complete restart after our lab‬
‭space was broken into and electronics systems were stolen. Ultimately, this drove us to eliminate the need for a‬
‭dedicated surface station entirely by rewriting our control software and making use of Raspberry Pi firmware to allow‬
‭direct connection to the ROV from‬‭any computer‬‭with an ethernet port.‬



‭7‬

‭Control and Electrical Systems‬
‭Electronic Design and Cabling‬
‭Fig. 3 (right from top to bottom):‬
‭3A: KiCAD EDA of model of Pi hat PCB for onboard data & power connections‬
‭3B: 48 to 3.3/5/7.2 V power converter PCB‬
‭3C: CAD render of XT60 power buses‬
‭3D: KiCad schematic of the 48 to 12V converter‬
‭We created custom designed electronics that can provide enough power to tackle the‬
‭challenges specified by the MATE RFP. Our electrical system emphasizes modularity,‬
‭safety, and performance. We standardized all‬‭48 V to 12 V‬‭and‬‭48 V to 5 V‬‭power‬
‭systems to be equipped with‬‭XT60 and XT30 connectors‬‭, respectively.‬
‭Standardization allows for quick swapping of spare parts, plus space, weight, and‬
‭efficiency savings of XT and Bullet series connectors over screw terminals.‬

‭We also use‬‭custom-designed Printed Circuit Boards (PCBs)‬‭using KiCAD‬
‭EDA to save space, improve efficiency, lower part count, improve reliability, and‬
‭simplify mounting. The‬‭Pi Hat PCB‬‭(Fig. 3A) connects the Raspberry Pi to the Electronic‬
‭Speed Controller (ESC) signal wires, BNO055 IMU sensor, Raspberry Pi fan, and servo‬
‭signal wires. The custom 48 to 12 V and 48 to 3.3/5/7.2 V‬‭power converter PCBs‬‭take‬
‭minimal space within the pressure hold. With more available space for power‬
‭converters, we can include one power converter per motor. Reducing the load on each‬
‭power converter allows us to extract maximum power from each thruster. The custom power converter PCBs also‬
‭allow for additional devices to be easily incorporated into the PCBs.‬

‭Since each thruster is connected to its own power converter, we must distribute 48 V at 30 A to all of the power‬
‭converters. No small off-the-shelf solution accomplishes this. Therefore, we designed, machined, and assembled our‬
‭own in-house‬‭XT60 power buses‬‭with copper bus bars capable of 30 A of safe, continuous power delivery (Fig. 3C).‬
‭Cooling‬
‭To keep electronics within their thermal limits, we added forced convection (fans)‬
‭to aid the rejection of waste heat from the raspberry pi and power electronics. As‬
‭a result, our ROV is capable of running continuously with no thermal time limit,‬
‭verified with multiple 5-hour test runs‬‭.‬
‭Power Calculations‬
‭We created a spreadsheet to track the ROV’s total power consumption. It contains current, power draw, and efficiency‬
‭loss estimates linked to automated calculations. The spreadsheet is readily accessible by all employees, and has a user‬
‭guide to explain how to use, test, and update the calculations.‬

‭Table 1 (below): Power calculations for Boxfish operating at maximum power.‬
‭System‬ ‭Power Draw‬

‭Provided MATE Power Supply‬ ‭30 A @ 48V =‬ ‭+1440 W‬
‭Tether efficiency losses to environment (voltage drop)‬ ‭30 A @ 3.9V =‬ ‭-117.9 W‬
‭Sensitive electronics such as Raspberry Pi 4. Isolated‬
‭from actuators to prevent damage from voltage spikes.‬

‭1 Raspberry Pi 4: -12 W‬
‭2 USB cameras: -2 W‬

‭Power Loss (converter inefficiency): -1.4 W‬

‭-15.38 W‬

‭Mid Voltage Actuator, T200 Thrusters‬ ‭6 × T200 @ 12 A: -864 W‬
‭1 M200: -144 W‬

‭Power Loss (converter Inefficiency): -137.45 W

‭-1145.45 W‬

‭Remaining margin for efficiency losses and future additions:‬ ‭162.62 W‬
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‭Our system consumes‬‭1278.73 W‬‭at peak load. Seven 240 W, 48 V to 12 V power converters are‬‭used to power the six‬
‭ESCs and T200 motors onboard, resulting in‬‭144 W (60%) peak load on each converter‬‭. Furthermore, the‬‭design‬
‭incorporates one 15 W, 48V to 5 V converters, as indicated by Table 1, to provide power to sensitive electronics. This‬
‭measure is implemented to safeguard delicate components against potential harm induced by voltage spikes.‬

‭Control Station‬
‭The‬‭control station‬‭is the collection of equipment the pilot uses to‬
‭operate the ROV.‬‭Boxfish‬‭’s control station consists of a laptop and‬
‭Logitech F310 controller, where the laptop is connected to the ROV‬
‭directly via ethernet. The ROV’s Raspberry Pi works as a DHCP server,‬
‭enabling‬‭zero-configuration, routerless operation‬‭with any‬
‭ethernet-enabled surface station to‬‭maximize ease of deployment by‬
‭customers‬‭. This design is intentionally simple, ensuring‬‭efficient,‬
‭reliable processes‬‭for setup and teardown during MATE operations.‬

‭Control System Software‬
‭Fig. 4 (right): Architecture diagram of ROV software systems.‬

‭Our software system consists of two parts, a surface station computer‬
‭and an onboard‬‭Raspberry Pi 4‬‭. The two parts communicate with each‬
‭other through‬‭websockets‬‭. This design promotes modularity and‬
‭simplicity of communication between the robot and control station.‬

‭The software on the surface station is divided into 3‬
‭components: interface, control core, and task code. The interface‬
‭component accepts human input from a controller and sends‬
‭movement commands to the control core. The control core translates‬
‭the commands into‬‭pulse-width modulation values‬‭and sends them to‬
‭the Raspberry Pi via websockets. Task code is responsible for MATE‬
‭tasks that involve autonomous navigation and computer vision.‬

‭The onboard Raspberry Pi is the intermediary between the surface station and the ROV’s sensors and‬
‭actuators. It relays pulse-width modulation values from the surface station to the motor system and transmits data‬
‭from sensors and cameras back to the surface station.‬

‭The software of the ROV is implemented in‬‭Godot‬‭and‬‭Python‬‭. Godot’s capabilities as a game engine allow it‬
‭to accept inputs more naturally as well as provide a digital simulation of the robot and its movement. Meanwhile,‬
‭Python is utilized for the rest of the robot for movement-related computations as well as task code.‬

‭The control software includes a software copilot which aids ROV piloting. Various controllers and filters‬
‭combine accelerometer data with control inputs to provide‬
‭stabilization, heading hold, and depth hold modes to the pilot.‬

‭Tether Construction‬

‭Fig. 5 (right): A digital 3D model and cross section of our tether‬
‭configuration. Dimensions are given in mm unless otherwise noted.‬

‭Flexibility, low weight, durability, and reliability when transporting‬
‭power and data were the design goals of‬‭Boxfish’s‬‭tether. For power,‬
‭10 AWG UL 1426 marine-grade wire‬‭was used for its good‬
‭efficiency-to-weight ratio for our 48-volt system. The two cable power system allows us to use modified WetLink‬
‭Penetrators to connect to the pressure hold, while its PVC jacket and flexible stranded copper conductors enable safe,‬
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‭dynamic underwater deployment. A‬‭Blue Robotics Fathom ROV Tether‬‭acts as a CAT 5 ethernet cable for data‬
‭transfer. Its flexibility and resistance to damage provide a stable backbone for the ROV’s control system. The three‬
‭cables are covered with a braided polyester sheath, protecting the cables from abrasion while keeping the tether‬
‭flexible. It uses a 12 mm (½” nominal) sheathing based on our CAD model of the tether.‬
‭We chose a‬‭20 meter length‬‭for the tether based on a CAD model of the MATE pool specifications,‬‭plus ~10% margin.‬
‭By limiting the length of our tether to what we need, we reduce tripping hazards while mitigating voltage drop. When‬
‭the ROV pulls its maximum of 30A, the voltage drop is at most 3.91 V,‬
‭leaving‬‭44.1 V (92% of maximum possible) available‬‭for use. The‬
‭minimum voltage accepted by our power converters is 36 V, so the ROV will‬
‭always have sufficient voltage.‬

‭Fig. 6 (right): CAD of MATE pool specifications showing min. tether length‬

‭The tether’s internal wires are protected through‬‭strain relief grips‬‭on‬
‭each end of the tether and a‬‭braided cable sheath‬‭covering the cable run.‬
‭When the tether is pulled, the strain relief prevents the wires from‬
‭experiencing extraneous tension, mitigating damage and improving ROV performance. On the surface, the data cable‬
‭connects directly to our surface station. The power cables connect to the MATE power supply via a resettable 30 A‬
‭inline breaker that serves as an‬‭emergency shutoff switch‬‭. They are also outfitted with the MATE-specified 30 A inline‬
‭fuse, and MATE-specified powerpoles. With a working strength of 36 kg and a breaking strength of 159 kg, the tether is‬
‭strong enough that the ROV can be safely lifted by the tether with the installed strain relief (See‬‭Vehicle Safety‬
‭Features‬‭).‬

‭Tether Management Protocol‬
‭1.‬ ‭Designate someone as tether tender for the duration of operations.‬
‭2.‬ ‭Tether tender uncoils tether in a figure eight on the deck. This prevents the tether from kinking or tangling.‬
‭3.‬ ‭Tether is connected to the surface station strain relief, then power, then ethernet.‬
‭4.‬ ‭Strain relief is checked on both ROV and surface station side.‬
‭5.‬ ‭Tether tender must provide enough tether length necessary to allow the ROV to reach its working depth. Too‬

‭little will inhibit the ROV, too much will cause tangling.‬
‭6.‬ ‭ROV pilot must avoid 360 degree rotations & close maneuvers around obstacles when possible to avoid‬

‭tangling.‬
‭7.‬ ‭Never step on the tether, as this could damage signal and power wires.‬
‭8.‬ ‭Once operations are completed, tether tender is in charge of disconnecting the tether from the surface‬

‭station and power.‬
‭9.‬ ‭After disconnection, the tether tender coils the tether.‬

‭Adapted from Christ & Wernli, 2013 and Moore, Bohm, & Jensen, 2010‬

‭Propulsion‬
‭Boxfish utilizes 6‬‭Blue Robotics T200‬‭thrusters for propulsion. We chose to use these‬‭thrusters due to their moderate‬
‭cost and good efficiency at lower power levels. In order to stay within our total power budget, each thruster is run at 12‬
‭V with a current draw of 12 A, and the PWM signals sent to ESCs range from 1160 to 1840 microseconds. The 6 thrusters‬
‭consume approximately 982 W of power in total (88% power efficiency), staying within our total power budget of ~1.3‬
‭kW for the ROV’s onboard systems. Our thrusters are operating at 70.6% of their maximum capabilities (max of 17 A).‬
‭This percentage along with the PWM signal threshold determined that each thruster provides 3.01 kg F in the forward‬
‭direction and 2.34 kg F in reverse, allowing a maximum lift capacity of 6.02 kg F when both side thrusters work‬
‭together to move the ROV upward when neutrally buoyant (BlueRobotics, 2024, May 21)).‬

‭Boxfish’s‬‭precision of motion is achieved through‬‭variable motor thrust‬‭based on‬‭inputs from the control‬
‭system. Thrust from the T200s operates on an input scale ranging between -1 to 1, denoting the amount of thrust for‬

https://docs.google.com/document/d/1Jx9gZEaPf9MhOh9jwkcxz7RpG8zUiVvOCw2-BichGos/edit#heading=h.sjrgexn10ycu
https://docs.google.com/document/d/1Jx9gZEaPf9MhOh9jwkcxz7RpG8zUiVvOCw2-BichGos/edit#heading=h.sjrgexn10ycu
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‭forwards or backwards force. Additionally, our custom‬‭IP2X motor safety shrouds‬‭provide improved thruster‬
‭efficiency compared to more traditional protective gratings often seen on ROVs. This allows the ROV pilot to maneuver‬
‭accurately in smaller spaces and traverse distances rapidly in more open waters. Through this arrangement,‬‭Boxfish‬‭’s‬
‭T200s meet requirements for completing a wide variety of MATE tasks.‬

‭Boxfish’s‬‭six thrusters are arranged to enable‬‭Six Degrees of Freedom (6 DOF)‬‭motion,‬‭taking inspiration from‬
‭the Ariana-I ROV. Although 6 DOF increases the complexity of our control and stabilization systems compared to more‬
‭traditional layouts, it raises our performance ceiling, making the tradeoff worthwhile. Based on mission task‬
‭requirements, we allocated motors to different axes of movement:‬

‭●‬ ‭Y axis (forward/backward)‬‭: 3 thrusters, prioritizing speed over long distances‬‭to move efficiently between‬
‭MATE mission tasks located in different areas‬

‭●‬ ‭Z axis (up/down)‬‭: 2 thrusters used for moderate vertical speed when delivering‬‭payloads to/from seafloor‬
‭●‬ ‭X axis (left/right)‬‭: 1 thruster used for slow, precise alignment during manipulation‬‭tasks‬

‭With these allocations in mind, we selected positions on the ROV that optimize serviceability and control authority.‬
‭During ROV operation, a Python script solves for necessary motor powers through using the desired force and torque‬
‭on the ROV combined with thruster orientations and locations in our CAD model.‬

‭Table 2 (below): Table of thrust directions (pink) for each axis of movement and rotation (red, green, blue)‬
‭Axes‬ ‭Translate‬‭+X‬ ‭Translate‬‭+Y‬ ‭Translate‬‭+Z‬ ‭Rotate‬‭+X‬ ‭Rotate‬‭+Y‬ ‭Rotate‬‭+Z‬

‭Buoyancy and Ballast‬
‭The main source of buoyancy comes from the electronics pressure hold filled with air. Combined with the low‬

‭weight of the frame and other components, this makes our ROV overall‬‭positively buoyant prior to ballasting‬‭. This‬
‭year, we revised our ballasting system to prioritize ease of use and modularity, while still considering granularity of the‬
‭system.‬‭Stackable 0.90‬ ‭0.01kg 304 stainless steel plates‬‭are attached via screws onto the frame to remain‬±
‭neutrally buoyant underwater‬‭. The aluminum plates can be removed or added to regulate the weight of the ROV at‬
‭any location, and are typically added to the bottom of the frame to increase stability.‬

‭We used our digital twin CAD model to predict ballasting needs before making actual adjustments to the ROV.‬
‭Our CAD model estimates that our ROV has a mass of‬‭7.70kg‬‭while displacing‬‭8.06 liters‬‭(‬‭8.06kg‬‭of freshwater), so the‬
‭difference of‬‭0.36kg‬‭gave us a starting point of how much mass to add. After adding our initial estimate of ballast, we‬
‭iteratively test drive and redistribute ballast to optimize its amount and distribution.‬

‭Additionally,‬‭our tether is a source of ballast for the ROV‬‭. When the tether is in the water,‬‭Boxfish‬‭becomes‬
‭negatively buoyant‬‭. To help compensate for this, our tether features buoyancy in the form of pool noodles. While‬
‭pool noodles crush and leak under pressure, they are suitable for pressures that will be experienced in the MATE task‬
‭scope. These pool noodles can also be adjusted so that the tether floats at the surface of the water when the ROV is at‬
‭the bottom of the body of water we are operating in, minimizing the risk of entanglement for the ROV.‬
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‭Payload and Tools‬
‭Modular Manipulator Interface‬
‭To address the diversity of tasks in the 2024 MATE Explorer Competition, we use a variety of manipulators that use a‬
‭single interface. Our interface allows us to frequently and uniformly swap manipulators and ultimately specialize the‬
‭ROV to the tasks. This interface and each of its swappable components underwent extensive prototyping, testing, and‬
‭iteration as documented in Table 3 and in the ‘‬‭Critical Analysis: Testing & Troubleshooting‬‭’ section.‬

‭Table 3 (below)‬‭:‬‭Concepts and prototypes of the ROV’s modular manipulator interface.‬
‭Design Idea‬ ‭Concept Models and Prototypes‬

‭Updated from the 2023 UWROV Boxfish Modular‬
‭Manipulator Interface. Problems included entrapped‬
‭salt water crystallization, requires two hands for‬
‭disengaging manipulator, and degradation in plasticity‬

‭Driver Version 1: Rotational symmetry for easy‬
‭alignment, functional, less material used, clips are less‬
‭accessible, houses a hybrid splined & magnetic coupler‬
‭to transmit torque to dynamic manipulators.‬

‭Driver Version 2: Rotational symmetry for easy‬
‭alignment, horizontal clips, fewer arms for less material‬
‭use, easy engagement but less accessible technique for‬
‭disengagement‬

‭Driver Version 3: Thin PLA clips, mounted further from‬
‭coupler for easier disengagement, exposed top of clip‬
‭for increased accessibility, fits within GoBilda geometry‬
‭for sleeker look and lateral protection‬

‭Variable Ratio Gearbox: Used for all drivers, specialized‬
‭gear ratios for each dynamic manipulator, houses clip‬
‭shelves.‬

‭Manipulator Coupler: Facilitates interface between‬
‭driving motor and Variable Ratio Gearbox for‬
‭manipulators with magnetic alignment. Fasteners are‬
‭rotationally symmetric to allow for high-speed input‬
‭with minimal vibration‬
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‭Manipulator Designs‬
‭Our modular manipulator system is compatible with both static and dynamic manipulators. Dynamic manipulators‬
‭achieve‬‭independent motion‬‭through a driving module‬‭that connects to the external servo via a hybrid magnetic &‬
‭splined coupler. The alternating poles of the‬‭miniature‬‭neodymium magnets‬‭in the couplers help automatically‬‭align‬
‭them during installation to engage positive splined drive. Static manipulators do not move relative to the ROV, and‬
‭instead take advantage of our‬‭high overall agility‬‭to maneuver props. Modular static and dynamic manipulators can‬
‭be installed interchangeably in the quick-connect interface, allowing for rapid tooling changes in the field.‬

‭Table 4 (below): Interchangeable dynamic (moving) manipulators designed for specific MATE tasks‬
‭Models and Images‬ ‭Description‬

‭“Lobster Claw”‬
‭General Purpose vertically mounted grabbing manipulator‬
‭designed to grab items like PVC pipes from below the ROV. Rubber‬
‭is mounted around each arm for an enhanced grip on items.‬
‭Used for multiple tasks.‬

‭“Moray”‬
‭This is a general purpose forward grabbing manipulator designed‬
‭to grab items such as PVC pipes to complete tasks. Rubber is‬
‭wrapped around each arm to enhance the grip of the manipulator‬
‭(see “Lobster Claw” for general purpose vertical grabbing‬
‭manipulator).‬
‭Used for multiple tasks across competition.‬

‭“Anglerfish”‬
‭Manipulator used to rotate the valve on the irrigation system. The‬
‭pentagonal mouth allows for easy self-centering on the valve, and‬
‭the hook allows the ROV to hold the frame of the irrigation system.‬
‭An acrylic base is added to the hexagonal valve interface to allow‬
‭the pilot to see the rotation of the valve in real time.‬
‭Used for Task 3.1 (rotating valve on irrigation system)‬

‭“Lamprey”‬
‭This is a company designed recovery line designed to clip onto a‬
‭U-bolt. The clip will have a rope attached. Once the clip is attached‬
‭to the U-bolt, the manipulator can be spun to a particular‬
‭orientation then released.‬
‭Used for task 1.1 (Securing Connection to U-bolt)‬

‭“Barnacle”‬
‭Static hook manipulator designed to deploy and retrieve items. In‬
‭the prototype, a 3D printed piece is attached to prevent the‬
‭manipulator from sliding within the manipulator interface.‬
‭Used for Task 3.1 (deploying irrigation system framework)‬
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‭Float Design‬
‭UWROV’s 2024 profiling float, the NanoFloat 1.0, is unprecedented in its innovative design, specially optimized‬

‭for the 2024 MATE RFP. NanoFloat is designed around two primary objectives: fast profiling for‬‭Task 4: Vertical‬
‭Profiling‬‭, and remote pressure data transmission for‬‭Task 4: Data Visualization‬‭. To‬
‭excel at these primary objectives, NanoFloat is built with reliability, operational‬
‭simplicity, and cost-effectiveness as its core design principles. We prioritized NanoFloat’s‬
‭Task 4 performance by maximizing buoyancy differential and wireless performance,‬
‭while maintaining sufficient mission duration, processing power, and sensor accuracy.‬

‭The buoyancy drive uses a custom linear actuator to extend the bottom endcap,‬
‭with a brushed DC motor-driven screw serving as the actuator. The central ESP32‬
‭microcontroller communicates with the pressure sensor and uses its data to inform‬
‭motor actuation. When the float surfaces, the ESP32 generates a WiFi network to which‬
‭the surface station connects for wireless communication and visualization of the logged‬
‭data. All these systems are powered by a 6V battery pack consisting of four 1.5V AAA‬
‭batteries in series.‬

‭144.0mm long at full extension and 38.1mm in diameter at the endcaps, the NanoFloat’s‬
‭uniquely small size allows for a displacement-volume ratio of 0.083:1, giving it an‬
‭excellent buoyancy differential and great acceleration for quick profiles. This small size‬
‭also minimizes the overall price of the NanoFloat components. Small size is not without‬
‭disadvantages, however, and many sacrifices were necessary to realize this design:‬

‭●‬ ‭Choosing one of the smallest ESP32 breakout boards on the market led to limited processing power and‬
‭input/output pins.‬

‭●‬ ‭The float’s sensor payload is space-limited.‬
‭●‬ ‭Minimum mission duration is limited to 3.2 hours under normal operation, 25 minutes as a theoretical limit.‬

‭These drawbacks are serious, and accepting them was difficult during the design process, but strategically choosing‬
‭which sacrifices to make allows the NanoFloat to be optimized for performance at the MATE ROV competition, where‬
‭sensor payload is limited to a single pressure sensor, mission duration is only 15 minutes, and complex processing is‬
‭not necessary. In addition to these sacrifices in favor of size and acceleration potential, we also had to navigate the‬
‭tradeoffs between the transmission range offered by radio and the reliability and simplicity of WiFi wireless‬
‭communication, as well as the balance between extreme pressure-rating and cost-effectiveness.‬

‭Non-ROV Device SID:‬
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‭Build vs. Buy, New vs. Used‬
‭UWROV‬‭reuses‬‭components of the‬‭ROV when they meet requirements and are not performance bottlenecks. Reusing‬
‭hardware allows us to reduce hardware costs and increase reliability by using previously qualified systems. We can‬
‭then focus our development energy on the components that are our current performance bottlenecks. Last year, we‬
‭implemented mission critical upgrades to our manipulator, power distribution, and software. This year, our main focus‬
‭was developing a manipulator system that allows the use of specialized, high-performance tools for every MATE task.‬
‭We also innovated on our profiling float, improved the longevity and efficiency of our ROV, and recovered from a‬
‭laboratory break-in resulting in the theft of many critical systems and components.‬

‭Table 11 (below): Reused Purchased UWROV Systems‬
‭System‬ ‭Justification‬

‭Raspberry Pi 4‬ ‭Meets requirements: compute, power draw, ROV systems control, camera & data streaming‬
‭Logitech Controller‬‭Meets requirements: control scheme, pilot familiarity, reliability‬

‭Cameras‬ ‭Meets requirements: sufficient visibility for pilot & autonomous systems for MATE tasks requiring‬
‭underwater visibility (ex. Task 3.2)‬

‭Table 12 (below): Reused Custom-built UWROV Systems‬
‭System‬ ‭Justification‬

‭Pressure Hold‬ ‭Meets requirements: space, mass, visibility, serviceability, and electrical connectivity‬
‭Electrical Systems‬

‭Chassis‬ ‭Meets requirements: mounting structure, security, visibility, servicability‬

‭Tether‬ ‭Meets requirements: efficiency, safety, strength, abrasion resistance, and strain relief‬

‭Table 13 (below): Newly Purchased UWROV Systems‬
‭System‬ ‭Justification‬

‭B.R. T200 Thrusters‬ ‭Increased thrust enables greater lift capacity and navigation speed to MATE tasks‬
‭Laptop‬ ‭Theft: our original control laptop was stolen.‬
‭M200 Motor‬ ‭Redesigned modular manipulator system requires more power, improved reliability‬
‭goBILDA channels‬ ‭Construction of a second ROV for non-MATE scientific missions‬
‭Hardware‬ ‭Increased ROV lifespan and mechanical reliability‬
‭Float Hardware‬ ‭New float design from the ground up‬

‭Table 14 (below): New Custom-built UWROV Systems‬
‭System‬ ‭Justification‬

‭Custom Power‬
‭Converters‬ ‭Enhanced stability in driving ROV thrusters at high power‬

‭Manipulator Base‬ ‭Enables specialized manipulators for every MATE task‬
‭Manipulators‬ ‭New set of MATE tasks requires enhanced specializations and adaptations‬

‭Surface Station‬ ‭Theft: our originally implemented surface station was stolen‬
‭Bumper System‬ ‭Protect environment and personnel from sharp/hard corners on ROV‬

‭3D Printed Structure‬‭100% infill prevents flooding with water, keeping buoyancy constant‬
‭Buoyancy Engine‬ ‭Ultra-cheap, compact float buoyancy driver designed from scratch‬

‭CAD Tools‬ ‭Streamlines design process of ROV components‬
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‭System Integration Diagrams (SIDs)‬

‭Fig. 7: Electrical System SID‬
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‭Safety‬
‭UWROV’s safety philosophy is to mitigate risks long before unsafe situations occur.‬
‭Personnel and equipment safety‬‭are highly prioritized due to an influx of new‬
‭employees with little to no experience with engineering equipment. Our team’s shop lead‬
‭fulfills the duties of a‬‭safety officer‬‭,‬‭ensuring that employees learn and comply with‬
‭safety standards set forth by the team and local regulations.‬
‭Fig. 8 (right): UWROV employee wearing safety goggles while working.‬

‭Personnel Safety‬
‭Before using the lab, all employees undergo mandatory lab safety training. This training‬
‭covers safe usage of hand tools, safety equipment location (first aid kits, fire‬
‭extinguishers, eye showers), accident procedures, required PPE and lab attire (safety glasses, closed-toed shoes, etc.),‬
‭chemical storage locations, and emergency contacts. For the use of power tools such as soldering irons, drills, and‬
‭lathes, employees must also undergo an additional one-on-one training course with our shop lead. The course‬
‭includes live training with the shop lead, a written exam that covers the different parts of the tool and operational‬
‭procedures, and a practical exam where the employee demonstrates their proficiency with the tool. The shop lead also‬
‭supervises the acquisition and usage of all equipment in the lab. Employees must demonstrate an understanding of‬
‭safety procedures, awareness of hazards, and proficient usage of lab equipment to the shop lead before they are‬
‭permitted to use equipment independently. For a complete list of lab safety rules and procedures, see‬‭Appendix B‬‭.‬

‭Equipment Safety‬
‭A main priority when designing‬‭Boxfish‬‭was preventing injury through vehicle safety features. This was done by‬
‭eliminating as many potentially dangerous features as possible and making hazards very visibly clear to employees.‬
‭Sharp edges and corners have been covered by soft rubber feet and bumpers, respectively, to allow employees to‬
‭safely carry and handle the ROV. Additionally, sharp edges are broken, typically by filing, preventing damage to‬
‭poolside surfaces and sensitive marine environments. Our thrusters are covered by custom 3D-printed IP2X compliant‬
‭thruster shields to prevent injury when handling the ROV. These shields also prevent ropes or cords from getting‬
‭caught in the thrusters when navigating around them. We have also applied ANSI Z535.3-2011 compliant warning‬
‭labels to the thrusters to warn employees of potential injury. Additionally, all materials on our ROV are non-toxic and‬
‭non-corroding for the safety of employees, marine environment, and the ROV itself.‬

‭From an electrical standpoint, all of‬‭Boxfish’s‬‭wiring complies with NASA‬
‭Workmanship Standards (NASA, 2002). All electrical connections are done through‬
‭enclosed connectors or a lineman splice that has been flooded with solder and‬
‭protected with a heat sink. There are no exposed electrical connections within the‬
‭pressure hold. Additionally, an internal fan has been installed to prevent the formation‬
‭of hotspots by circulating air within the pressure hold. Our tether is protected from‬
‭damage due to tension by a braided cable sleeve, along with tether strain relief on the‬
‭ROV and surface station.‬

‭Operational Safety‬ ‭Fig. 9 (above): Operational safety checklists in use by a UWROV employee.‬
‭UWROV identified potential hazards during operation of the ROV by performing a‬‭Jobsite Safety Analysis (JSA)‬‭and‬
‭implementing operational checks to mitigate potential risks. Examples include ensuring proper restraint of tools and‬
‭equipment, clamps on materials being manipulated, and removing loose debris in or around the ROV.‬

‭Safety Procedures‬
‭We‬‭use‬‭a‬‭series‬‭of‬‭safety‬‭checklists‬‭when‬‭assembling‬‭and‬‭deploying‬‭the‬‭ROV‬‭to‬‭reduce‬‭the‬‭risk‬‭of‬‭harm‬‭to‬‭employees‬
‭or‬‭the‬‭ROV‬‭(see‬ ‭Appendix‬‭A‬ ‭and‬ ‭Appendix‬‭B‬‭).‬ ‭These‬‭checklists‬‭are‬‭integral‬‭to‬‭our‬‭zero-accident,‬‭zero-leak‬‭record‬‭for‬
‭in-water testing over the last three years.‬
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‭Critical Analysis: Testing & Troubleshooting‬
‭UWROV employs a‬‭data-driven engineering approach‬‭to testing and troubleshooting. We collect extensive‬‭data‬
‭through measuring prototypes, collecting operational telemetry, and analyzing design alternatives, and we use this‬
‭data to inform trade studies, optimization procedures, and design decisions.‬‭Boxfish‬‭was‬‭tested in-water for‬‭over 32‬
‭hours.‬‭Findings from these tests informed improvements in manipulator prototypes and software control‬‭parameters.‬

‭Structures & Materials‬
‭We evaluated frame material options through a trade study, and determined that goBILDA was the best option:‬

‭(Table 15)‬

‭System‬
‭Performance‬ ‭Ease of Development‬

‭Versatility‬ ‭Strength‬ ‭Weight‬ ‭Bulky‬ ‭Metric‬ ‭Cost‬ ‭Already in lab‬ ‭Design Work‬
‭goBILDA‬ ‭High‬ ‭Mid‬ ‭Low‬ ‭No‬ ‭Yes‬ ‭High‬ ‭Yes‬ ‭Challenging‬

‭Actobotics‬ ‭Mid‬ ‭Mid‬ ‭Low‬ ‭No‬ ‭No‬ ‭Mid‬ ‭No‬ ‭Challenging‬

‭80/20‬ ‭Mid‬ ‭High‬ ‭High‬ ‭Yes‬ ‭Yes‬ ‭Mid‬ ‭Some‬ ‭Moderate‬

‭PVC pipe‬ ‭Low‬ ‭Low‬ ‭Mid‬ ‭Yes‬ ‭No‬ ‭Low‬ ‭Yes‬ ‭Easy‬
‭We also utilized 3D prints substantially throughout our ROV and float. Our‬‭telemetry from ROV tests‬‭indicated‬
‭increasing weight over time, which we determined to be‬‭3D prints filling with water‬‭, so we printed all submerged‬
‭components at‬‭100% infill‬‭with more perimeters for greater strength and leak prevention. After‬‭observing corrosion‬
‭on zinc-plated steel fasteners, we replaced all hardware with‬‭316 stainless steel‬‭alternatives for corrosion resistance.‬

‭Seal Design, Testing, and Optimization‬ ‭Fig. 10 (right): sealing size prototypes‬
‭NanoFloat‬‭utilizes 3D printed watertight endcaps to seal the inner electronics bay and as a critical‬
‭component of the buoyancy engine. Our initial prototype prints were found to leak, even with‬
‭O-rings and lubricant. We alleviated this through rigorous testing of sealing surfaces by:‬

‭1.‬ ‭Measuring PVC housing component inner diameter using precision calipers from 16‬
‭different angles, averaging measurements for a true inner diameter.‬

‭2.‬ ‭Sourcing O-rings matching true PVC diameter with appropriate compression.‬
‭3.‬ ‭Incrementally machining down O-ring groove diameters in PTFE stock, then inserting test piece with‬

‭lubricated O-rings into 10ft PVC pipe filled with water, testing the seal quality and actuation force.‬
‭4.‬ ‭Selecting lowest actuation force watertight diameter and printing prototype endcaps of varying infill settings,‬

‭perimeter settings, and groove depths (see Fig. 11).‬

‭Wireless Communications‬
‭WiFi signal range, another critical aspect of‬‭NanoFloat’s‬‭Task 4‬‭performance, was also subjected to testing. WiFi range‬
‭was measured by progressively distancing the surface receiver from the float in 1-meter increments and performing a‬
‭boolean test of transmission and response. Various antenna styles, positioning arrangements, and encasements were‬
‭tested in this manner, leading us to our current design and antenna choice with a range of 30m.‬

‭Electrical‬
‭The‬‭NanoFloat‬‭electrical systems have a brushed DC motor at their core. Under load, this motor initially generated‬
‭noise in the circuit, which threatened‬‭Task 4‬‭performance as it could affect pressure sensor readings and‬
‭microcontroller operation. We tested multiple power smoothing capacitors in several configurations to stabilize the‬
‭system-wide voltage. Pictured are two oscilloscope testing screens, the top one showing unsmoothed noise with the‬
‭motor under load and the bottom one showing 220uF capacitor smoothed noise under the same load conditions.‬
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‭Modular Manipulators‬ ‭Fig. 11 (right): prototype of valve turning manipulator‬

‭Boxfish’s modular manipulator system enables switching to a specialized tool individually designed‬
‭for specific MATE tasks (see Table 8).‬‭Manipulators undergo rigorous testing both in and out of‬
‭water, and designs are adjusted based on the results‬‭. For example, when developing the‬
‭“anglerfish” manipulator (see Table 8) for rotating the irrigation system valve in task 3.1, we‬
‭conducted both in-water and dry testing of the manipulator head. During our dry testing we found‬
‭that the pentagonal opening worked extremely well for centering the valve in the bottom of the‬
‭rotation interface (Fig. 10), allowing for ease of alignment when attached to the ROV. However,‬
‭during in-water testing, we encountered an issue‬‭where rotating the interface would push the valve away,‬
‭disengaging the manipulator.‬‭Based on this data‬‭, we added the hook feature to allow the ROV to index itself off of the‬
‭frame of the irrigation system. We‬‭verified this solution through data from subsequent in-water tests‬‭, finding that‬
‭the time to acquire and the duration of successful engagement with the valve decreased.‬

‭Ultra-Compact High-Reduction Gearbox‬‭Fig. 12 (right): close up of gear print‬

‭Our Ultra-Compact High-Reduction Gearbox used to actuate the dynamic manipulators of‬
‭Boxfish‬‭underwent significant testing and iteration to reach a reduction ratio of 240 to 1 within‬
‭a 43x43x32mm volume. The gearbox is a print-in-place (PIP) part, and employees conducted‬
‭tests with 3D slicing and printing technology to optimize settings to maximize performance. Results were examined via‬
‭software and equipment such as microscopes. Optimized values for key parameters are summarized in‬‭(Table 16).‬
‭Furthermore, we conducted wear‬
‭testing of the gearbox to verify its‬
‭lifespan, finding that after over 600,000‬
‭cycles driven by a lathe (2000 rpm for‬
‭5+ hours), the gearbox remained‬
‭undamaged, and even ran smoother.‬
‭Maximum torque was tested by‬
‭clamping the output and increasing‬
‭torque applied to the housing until‬
‭destruction, measuring a 1700 oz-in‬
‭failure torque.‬

‭Prototypes:‬
‭The gear reduction system also went‬
‭through a number of iterations‬
‭improving robustness and reduction ratios, summarized in the following table:‬

‭Table of Major Design Revisions of Gearbox System‬
‭Stackable PIP planetary‬
‭gearbox (4:1 per stage)‬

‭Cycloidal gearbox, ceramic‬
‭bearings (16:1 per stage)‬

‭Split ring planetary‬
‭gearbox (80:1)‬

‭Offset planet split ring‬
‭gearbox (up to 240:1)‬

‭Setting‬ ‭Original‬
‭Value‬

‭Optimized‬
‭Value‬

‭Results‬

‭Slice Gap‬
‭Closing Radius‬

‭0.49mm‬ ‭0.02mm‬ ‭Prevents gear teeth from merging‬
‭during the slice process and enables‬
‭tighter tolerances in small geometry.‬

‭External‬
‭Perimeter‬
‭Extrusion Width‬

‭0.45mm‬ ‭0.32mm‬ ‭Increases tooth engagement without‬
‭requiring a smaller nozzle and allows‬
‭for additional perimeters inside teeth.‬

‭Extra Perimeters‬
‭on Overhangs‬

‭OFF‬ ‭ON‬ ‭Improved bridging paths, quasi arc‬
‭overhangs, drastically better top layer‬
‭for captive magnets.‬
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‭Accounting‬
‭Budget‬
‭At the beginning of the year, we focused significant attention on creating a high level budget for the year, conducting‬
‭analysis of budgets and spending from 2022 and 2023 and re-evaluating sections and budgeted amounts. Because of‬
‭the heavy focus on iterative design and prototyping, we added the “Research and Development (R&D)” portion of the‬
‭budget, meant to account for the cost of prototypes and materials used in the design process, but not on the final ROV.‬

‭Furthermore, the overall budget was increased significantly from 2023, but reflects budgeting from 2022,‬
‭where the total budget came out to a total of $18,725. The budget was increased in part due to a greater allocation‬
‭toward travel–this year, we will have 10-12 employees traveling as a part of our competition team compared to 7 last‬
‭year. Other than travel, our budget is primarily focused on engineering, with a total of $9,200 being dedicated to R&D,‬
‭ROV components, and the float. Notably, we increased the budget for our Float in anticipation of developing an‬
‭entirely new design compared to last year.‬

‭To compensate for this increase portions of the budget were also decreased, such as Lab Safety and Tooling‬
‭and Equipment. Higher spending in these portions for past years allowed us to reuse, rather than purchase new,‬
‭equipment.‬

‭Travel Estimate‬
‭Category‬ ‭Description‬ ‭Cost‬ ‭Qt.‬ ‭Subtotal‬
‭Airfare‬ ‭Reimbursement per employee‬ ‭$270‬ ‭10‬ ‭$2700‬
‭Lodging‬ ‭Lodging rental, total (Airbnb)‬ ‭$3600‬ ‭1‬ ‭$3600‬
‭Car Rental‬ ‭Rental for a SUV (Hertz)‬ ‭$2000‬ ‭2‬ ‭$2000‬

‭Total:‬ ‭$8300-‬

‭Budget Allocation‬
‭Category‬ ‭Description‬ ‭2023 Allocation‬ ‭2024 Allocation‬

‭Lab Safety‬ ‭Items used for Lab Safety. Ex: Safety glasses, first aid‬
‭kits, hearing protection, etc.‬ ‭$300‬ ‭$200‬

‭Tooling & Equipment‬ ‭Items used in the lab for fabrication, designing, etc. Ex:‬
‭Wire crimpers, benchtop lathe, soldering iron, etc.‬ ‭$3,500‬ ‭$1,000‬

‭Research and‬
‭Development (R&D)‬

‭Prototypes and materials used in our iterative design‬
‭process. Ex: props, prototypes of PCBs, sensors, etc.‬ ‭–‬ ‭$3,000‬

‭ROV Surface Station‬ ‭Items used for the surface side portion of the ROV. Ex:‬
‭case, computer, router, controllers, etc.‬ ‭$400‬ ‭$1,600‬

‭ROV Structure‬ ‭Items used for ROV Frame, tether, and pressure hold.‬
‭Ex: stock for frame, stock for ballasting, O-rings, etc.‬ ‭$400‬ ‭$1,600‬

‭ROV Electronics‬ ‭Items used for internal electronics of the ROV. Ex:‬
‭sensors, power converters, cameras, etc.‬ ‭$1,500‬ ‭$2,500‬

‭Float‬ ‭Items used for the Float. Includes onboard computer,‬
‭sensors, materials, etc.‬ ‭$150‬ ‭$500‬

‭Team Operations‬ ‭Items used to run the team. Ex: shirts/polos, merch,‬
‭website hosting, etc.‬ ‭$700‬ ‭$700‬

‭Competition Logistics‬ ‭Shipping costs for checking in luggage with the ROV‬ ‭$180‬ ‭$350‬
‭Competition Fees‬ ‭Registration fees for the MATE ROV Competition‬ ‭$450‬ ‭$500‬
‭Competition Travel‬ ‭Transportation and lodging for the MATE Competition‬ ‭$6,050‬ ‭$10,000‬

‭Total:‬ ‭$13,350‬ ‭$21,950‬
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‭Cost Accounting: See‬‭Appendix C‬
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‭Appendix A: Safety Checklists‬
‭ROV Construction:‬
‭Disassembly:‬

‭Outside of ROV and work surface are completely dry.‬
‭Work surface is free from debris, including metal shavings, hair strands, dirt, and equipment.‬

‭Before closing:‬
‭No wires are disconnected or loose, and no wire conductors are exposed.‬
‭The pressure hold has no clouding or cracking, and the inside of the pressure hold is completely dry.‬
‭O-rings & grooves are clean, undamaged, and lubricated (no hairs, dirt, or metal shavings).‬
‭No wires are pinched between components or the walls of the pressure hold.‬
‭Remove pressure vent plug to avoid pressure build-up while closing.‬

‭While closing:‬
‭Align backplate end cap with main cylinder. Maintain alignment during the entire closing process.‬
‭Check that tether wires are oriented at the top of the backplate.‬
‭Use vacuum hand pump attached to the pressure vent to pull the backplate endcap onto the ROV.‬

‭After closing:‬
‭Insert pressure vent plug and verify it is screwed all the way in.‬
‭Internal assembly is horizontally level.‬
‭Both endcaps are flush with the main cylinder.‬
‭Visually verify that both O-rings form a complete seal.‬
‭Pressure hold retaining arm is lowered.‬

‭ROV Operation:‬
‭Pre-Deployment:‬

‭There are enough company members present to safely operate the ROV (at least Operations Director, Pilot,‬
‭and Poolside Tether Manager).‬
‭There is no damage in the ROV frame or pressure hold (watch out for clouding & cracks).‬
‭All ROV attachments (motor shrouds, floats, weights, motors) are secure.‬
‭There are no loose connections in the pressure hold.‬
‭The tether is laid out neatly without knots or tangles.‬
‭Battery/power supply is completely dry and away from the side of the water.‬
‭Surface station tether strain relief is connected, and tether ethernet and power are connected.‬
‭Surface station is stable and on a level surface.‬
‭Surface station computer, router, and monitors are plugged in, powered on, and connected.‬
‭All personnel have close-toed shoes, safety glasses, no loose clothing, and long hair tied back.‬
‭Recovery equipment (pole, net, etc.) handy.‬
‭Control center and tether staging area are clear of clutter and tripping hazards.‬

‭Pre-Initialization:‬
‭No water is flooding the pressure hold.‬
‭No parts have come loose from the ROV.‬
‭All connections are secure.‬

‭Deployment:‬
‭ROV Handler exchanges tools and payloads on ROV.‬
‭ROV Handler picks up ROV by its frame and holds it in the water in the deployment zone.‬
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‭Pilot announces “READY FOR HANDS OFF” when ROV state has stabilized based on cameras & data.‬
‭ROV Handler releases ROV and announces “HANDS OFF” when no longer touching the ROV.‬

‭During Operation:‬
‭Poolside Tether Manager is following designated tether management protocols.‬
‭Operations Director is facilitating communication between poolside and surface side‬

‭Resurfacing after Operation:‬
‭Pilot navigates ROV to launch & deployment zone, then announces “READY FOR HANDS ON”‬
‭ROV Handler picks up the ROV by its frame, then announces “HANDS ON”‬

‭Post-Deployment:‬
‭If ROV was deployed in saltwater, wash off with freshwater, especially plastic components & penetrators.‬

‭Appendix B: Lab Safety Policy‬
‭1.‬ ‭NEVER WORK ALONE IN THE LAB.‬
‭2.‬ ‭Wear lab-appropriate clothing at all times in the lab: safety glasses or side-shields; close-toed, no-slip shoes;‬

‭gloves (never when working with rotating/moving machinery); no loose clothing; no rings, watches, or‬
‭bracelets; long hair must be tied back.‬

‭3.‬ ‭All injuries or accidents must be reported‬‭immediately‬‭to the Lab Supervisor.‬
‭4.‬ ‭If you are in doubt as to a proper or safe procedure,‬‭stop work‬‭and ask for guidance.‬
‭5.‬ ‭Report unsafe or hazardous conditions wherever noted. Correct them if possible.‬
‭6.‬ ‭Eating or drinking is prohibited in lab spaces.‬
‭7.‬ ‭Be thoroughly knowledgeable concerning the equipment you are using.‬
‭8.‬ ‭Use tools for their intended purpose only.‬
‭9.‬ ‭Do not use fingers or hands to remove chips from moving or stationary machines.‬
‭10.‬ ‭Never adjust a moving or rotating machine unless motion is necessary to make adjustment. Always allow the‬

‭machine to come to a standstill before making adjustments or repairs.‬
‭11.‬ ‭Never leave a machine running while unattended, unless machinery is intended to do so.‬
‭12.‬ ‭Do not attempt to slow down or stop rotating or moving equipment with hands or tools.‬
‭13.‬ ‭File all machined parts or stock with sharp edges.‬
‭14.‬ ‭Always clamp or secure the workpiece properly.‬
‭15.‬ ‭Use appropriate respiratory protection when working with dusts, mists, fumes or vapors.‬
‭16.‬ ‭Read the SDS for all lubricants, resins, adhesives, or other chemicals you are working with.‬
‭17.‬ ‭Concentrate on what you are doing. Do not talk or be distracted while operating equipment.‬
‭18.‬ ‭Use proper techniques and obtain assistance when lifting, moving, or carrying loads.‬
‭19.‬ ‭Watch for tripping hazards. Do not place material or objects in thoroughfares or passageways.‬
‭20.‬ ‭Know the location of fire extinguishers, fire exits, and first aid kits.‬

‭Adapted from the UW Mechanical Engineering Machine Shop Rules (College of Engineering, 2021).‬
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‭Appendix C: Cost Accounting‬
‭Available Funds:‬

‭Category‬ ‭Name‬ ‭Amount‬
‭Carryforward Balance from 2023‬ ‭$6652.00‬

‭Sponsorship‬ ‭Foundry10‬ ‭$5000.00‬
‭Sponsorship‬ ‭Applied Physics Laboratory‬ ‭$3000.00‬
‭Sponsorship‬ ‭Dan Vogel of Eight Diving‬ ‭$7000.00‬
‭Grant‬ ‭Student Technology Fee Grant‬ ‭$2396.00‬

‭Total:‬ ‭$24048.00‬
‭ROV Total Cost:‬

‭Budget Category‬ ‭Type‬ ‭Item(s)‬ ‭Est. Value‬
‭ROV Surface Station‬ ‭Reused‬ ‭Controller‬ ‭$20‬
‭ROV Surface Station‬ ‭Donation‬ ‭Acer Nitro 5 Laptop‬ ‭$900‬
‭ROV Power Electronics‬ ‭Reused‬ ‭Tether Components‬ ‭$400‬
‭ROV Power Electronics‬ ‭Reused‬ ‭Blue Robotics Speed Controllers‬ ‭$228‬
‭ROV Power Electronics‬ ‭Reused‬ ‭Raspberry Pi 4 B 4 GB‬ ‭$75‬
‭ROV Power Electronics‬ ‭Purchased‬ ‭Custom Power Converters‬ ‭$220‬
‭ROV Power Electronics‬ ‭Purchased‬ ‭M200 Motor x 1‬ ‭$170‬
‭ROV Power Electronics‬ ‭Purchased‬ ‭T200 Thruster x 6‬ ‭$1,200‬
‭ROV Power Electronics‬ ‭Reused‬ ‭Cameras (USB Camera, BR-100126 x2)‬ ‭$198‬
‭ROV Structure‬ ‭Reused‬ ‭Acrylic Pressure Hold‬ ‭$60‬
‭ROV Structure‬ ‭Purchased‬ ‭goBILDA Low U Channel and Side Block Mounts‬ ‭$190‬
‭ROV Structure‬ ‭Manufactured‬ ‭3D Printed Parts‬ ‭$25‬
‭ROV Structure‬ ‭Purchased‬ ‭Stainless Steel Hardware‬ ‭$135‬

‭Total:‬ ‭$3821‬
‭Expenses (September 2023 to June 2024):‬

‭Budget Category‬ ‭Example Items‬ ‭Budgeted‬ ‭Total Value*‬ ‭Spent‬
‭Lab Safety‬ ‭Safety glasses, First Aid Kit, Face Shields‬ ‭$200‬ ‭$266.58‬ ‭$0.00‬
‭Tooling & Equipment‬ ‭Chuck Key, Lathe Turning Tool‬ ‭$1,000‬ ‭$3241.81‬ ‭$64.65‬

‭R&D‬ ‭Plywood, 3D Printer Filament, Magnets,‬
‭Test Motor, Prop Materials‬

‭$3,000‬ ‭$717.11‬ ‭$717.11‬

‭ROV Surface Station‬ ‭Controller, Laptop‬ ‭$1,600‬ ‭$918.99‬ ‭$0.00‬
‭ROV Structure‬ ‭Frame, Spray Paint, Hardware, 3D Prints‬ ‭$1,600‬ ‭$362.59‬ ‭$337.59‬

‭ROV Electronics‬ ‭Power Converters, Cameras, Tether‬
‭Components, Thrusters, Motors‬

‭$2,500‬ ‭$3397.04‬ ‭$2496.04‬

‭Float‬ ‭Antenna, Microcontroller, Sensors,‬
‭Batteries, PVC Body‬

‭$500‬ ‭$275.94‬ ‭$275.94‬

‭Team Operations‬ ‭Projector, USBC Adaptors, Printer‬ ‭$700‬ ‭$640.98‬ ‭$320.78‬

‭Competition Fees‬ ‭Explorer Registration Fees, Fluid Power‬
‭Quiz Registration‬

‭$500‬ ‭$475.00‬ ‭$475.00‬

‭Travel Fees‬ ‭Airfare, Car Rental, Lodging‬ ‭$10,000‬ ‭$6502.54‬ ‭$5962.54‬
‭Total:‬ ‭$21600‬ ‭$16,798.58‬ ‭$10649.63‬

‭*Total Value includes the value of reused items.‬


